• Title/Summary/Keyword: roll forming

Search Result 222, Processing Time 0.039 seconds

Progressive Process planning and die design to improve the formability in fine blanking of the lock plate in car seatbelt (자동차 좌석벨트의 록 플레이트의 정밀타발 시 성형성 향상을 위한 프로그레시브 공정 및 금형 설계)

  • Lee, Sang-Pill;Min, Byung-Hyun;Lee, Kwan-Young;Ko, Young-Jun;Kim, Chul;Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.84-92
    • /
    • 2013
  • This study improves the formability in fine-blanking the lock plate of car seat belts using a low carbon steel(SM35C) plate. The optimal die design for the forming process is proposed using rules for process planning based on theories and field experiences. The optimal design is analyzed using commercial finite element software in order to solve the fracture problems in the extrusion process. Through the improved layout based on the FEM results, the fracture of the extruded part and the roll over problem are solved. Furthermore, it is demonstrated through the shown from experiments that the extruded part does not break in the modified die.

Change in Microstructure and Coating Layer of Al-Si Coated Steel after Conductive Heating (Al-Si 도금강의 통전 가열에 따른 미세조직과 도금층 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.107-115
    • /
    • 2021
  • Al-Si coated boron steel has been widely used as commercial hot stamping steel. When the steel is heated at 900~930℃ for 5 min in an electric furnace, thickness of the coating layer increases as a consequence of formation of intermetallic compounds and diffusion layer. The diffusion layer plays an important roll in blunting the propagation of crack from coating layer to base steel. Change in microstructure and coating layer of Al-Si coated boron steel after conductive heating with higher heating rate than electric furnace has been investigated in this study. Conductive-heated steel showed the martensitic structure with vickers hardness of 505~567. Both intermetallic compounds in coating layer and diffusion layer were not observed in conductive-heated steel due to rapid heating. It has been found that the conductive-heating consisting of rapid heating to 550℃ which is lower than melting point of Al-Si coating layer, slower heating to 900℃, and then 1 min holding at 900℃ is effective in forming intermetallic compound in coating layer and diffusion layer.

Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2022
  • Compo-casting method is one of the popular technique to produce metal based matrix composites. But, one of the main challenges in this process is un-uniform spreading of reinforced subdivisions (particles) inside the metallic matrix and the lack of desirable mechanical properties of the final produced composites due to the low bonding strength among the metal matrix and reinforcement particles. To remove these difficulties and to promote the mechanical properties of these kind of composites, the WARM ARB technique was utilized as supplementary technique to heighten the mechanical and microstructural evolution of the casted Al/Al2O3 composite strips. The microstructure evolution and mechanical properties of these composites have been considered versus different WARM ARB cycles by tensile test, average Vickers micro hardness test, wear test and scanning electron microscopy (SEM). The SEM results revealed that during the higher warm- ARB cycles, big alumina clusters are broken and make a uniform distribution of alumina particles. It was shown that cumulating the forming cycles improved the mechanical properties of composites. In general, combined compo-casting and ARB process would consent making Al/Al2O3 composites with high consistency, good microstructural and mechanical properties.

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

An adaptive fuzzy control for closed-die ring-rolling process ("Ring 생산 Control System의 퍼지 적응제어")

  • 이용현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1476-1479
    • /
    • 1996
  • The ring rolling process is one of the best known ring production method. The present model based control system was designed for rings with rectangle cross-section yet. An Adaptive Fuzzy Control for Closed-Die Ring-Rolling was developed in order to enhance the flexibility of the radial-axial ring rolling machine and to produce the rings with highly complex cross-section profile, roller bearing rings. A fuzzy method was implemented because of its simple application and to utilize the known process knowledge. The quality of the control system was estimated by die filling grad, which is strong dependent on the rising time of the controller. The rolling process parameters were also varied to determine their influence on filling of the ring profile. Die filling met the requirement of the industry.

  • PDF

Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys (용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행)

  • Zulkarnain, Zulkarnain;Baek, E.R.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

A Comparative Study of Computer Simulation using High-Speed Tensile Test Results with Actual Crash Test Results of DP Steels (복합조직강의 고속인장 결과를 이용한 컴퓨터 전산모사와 실제 충돌시험 결과와의 비교 연구)

  • Bang, Hyung Jin;Choi, Il Dong;Kang, Seong Geu;Moon, Man Been
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.873-882
    • /
    • 2012
  • Dual Phase (DP) steel which has a soft ferrite phase and a hard martensite phase reveals both high strength and high ductility and has received increased attention for use in automotive applications. To conduct structural analysis to verify vehicle safety, highly credible experimental results are required. In this study, tensile tests were performed in a strain rate range from $10^{-4}/s$ to 300/s for Sink Roll-Less (SRL) hot-dip metal coated sheets. Collision properties were estimated through simulation by LS-DYNA using the stress-strain curve obtained from the tensile test. The simulation results were compared with the actual crash test results to confirm the credibility of the simulation. In addition, a tensile test and a crash test with 2% prestrain and a baking (PB) specimen were evaluated identically because automotive steel is used after forming and painting. The mechanical behaviors were improved with an increasing strain rate regardless of the PB treatment. Thus, plastic deformation with an appropriate strain rate is expected to result in better formability and crash characteristics than plastic deformation with a static strain rate. The ultimate tensile strength (UTS) and absorbed energy up to 10% strain were improved even though the total elongation decreased after PB treatment, The results of the experimental crash test and computer simulation were slightly different but generally, a similar propensity was seen.

Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors fabrication in organic substrates

  • Paik Kyung-Wook;Hyun Jin-Gul;Lee Sangyong;Jang Kyung-Woon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.201-212
    • /
    • 2005
  • [ $Epoxy/BaTiO_3$ ] composite embedded capacitor films (ECFs) were newly designed fur high dielectric constant and low tolerance (less than ${\pm}15\%$) embedded capacitor fabrication for organic substrates. In terms of material formulation, ECFs are composed of specially formulated epoxy resin and latent curing agent, and in terms of coating process, a comma roll coating method is used for uniform film thickness in large area. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ composite ECF is measured with MIM capacitor at 100 kHz using LCR meter. Dielectric constant of $BaTiO_3$ ECF is bigger than that of $SrTiO_3$ ECF, and it is due to difference of permittivity of $BaTiO_3\;and\;SrTiO_3$ particles. Dielectric constant of $BaTiO_3\;&\;SrTiO_3$ ECF in high frequency range $(0.5\~10GHz)$ is measured using cavity resonance method. In order to estimate dielectric constant, the reflection coefficient is measured with a network analyzer. Dielectric constant is calculated by observing the frequencies of the resonant cavity modes. About both powders, calculated dielectric constants in this frequency range are about 3/4 of the dielectric constants at 1 MHz. This difference is due to the decrease of the dielectric constant of epoxy matrix. For $BaTiO_3$ ECF, there is the dielectric relaxation at $5\~9GHz$. It is due to changing of polarization mode of $BaTiO_3$ powder. In the case of $SrTiO_3$ ECF, there is no relaxation up to 10GHz. Alternative material for embedded capacitor fabrication is $epoxy/BaTiO_3$ composite embedded capacitor paste (ECP). It uses similar materials formulation like ECF and a screen printing method for film coating. The screen printing method has the advantage of forming capacitor partially in desired part. But the screen printing makes surface irregularity during mask peel-off, Surface flatness is significantly improved by adding some additives and by applying pressure during curing. As a result, dielectric layer with improved thickness uniformity is successfully demonstrated. Using $epoxy/BaTiO_3$ composite ECP, dielectric constant of 63 and specific capacitance of 5.1nF/cm2 were achieved.

  • PDF

A Design for Realtime Monitoring System and Data Analysis Verification TA to Improve the Manufacturing Process Using HW-SW Integrated Framework (HW-SW 통합 프레임워크를 활용한 제조공정 개선을 위한 실시간 모니터링 시스템과 데이터 분석검증 TA설계)

  • Kim, Jae Chun;Jin, Seon A;Park, Young Hee;Noh, Seong Yeo;Lee, Hyun Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.357-370
    • /
    • 2015
  • Massive data occurred in a manufacturing place is able to fulfill very important roll to improve the manufacturing process. Domestic manufacturing business has been making an multilateral effort to react the change of manufacturing circumstance, but it undergoes many difficulties due to technical weakness. Coatings is a type of paint. It protect products by forming a film layer on the products and assigns various properties to those. The research of coatings is one of the fields studied actively in the polymer industry. The importance of the coatings in various industries is more increased. However, the industry still performs a mixing process in dependence on operator's experiences. In this paper, we propose a design for realtime monitoring system and data analysis verification TA to improve the manufacturing process using HW-SW integrated framework. Analysis results from the proposed framework are able to improve the coatings formulation process by collecting more quantitative reference data for work and providing it to work place. In particular, the framework may reduce the deterioration and loss cost which are caused by absence of a standard data as a accurate formulation criteria. It also may suggest a counterplan regarding errors which can be occurred in the future by deriving a standard calibration equation from the analysis using R and Design of Experiments about an error data generated in the mixing step.

Seasonal Fluctuation and Distribution of Obolodiplosis robiniae (Diptera: Cecidomyiidae) Within Crown of Robinia pseudoacacia (Fabaceae) (아까시잎혹파리, Obolodiplosis robiniae (Diptera: Cecidomyiidae) 연간 밀도변동과 아까시나무 수관 내 분포)

  • Lee, Jung-Su;Jung, Yu-Mi;Choi, Kwang-Sik;Kim, Il-Kwon;Kwon, Young-Dae;Jeon, Mun-Jang;Shin, Sang-Chul;Choi, Won-IL
    • Korean journal of applied entomology
    • /
    • v.48 no.4
    • /
    • pp.447-451
    • /
    • 2009
  • Locust gall midge (LGM), Obolodiplosis robiniae (Haldeman) (Diptera: Cecidomyiidae), is a cecidomyiid insect forming roll-up galls on leaves of Robinia pseudoacacia Linnaeus (Fabaceae). LGM, known as native to North America, was reported from Korea and Japan in 2002. LGM was observed weekly or biweekly to clarify their voltinism and distribution within the crown of the host tree in two sites of Osan and Siheung in Korea from May to August, 2007. Density of LGM was investigated based on the number of larvae per leaf. Two generations of LGM were observed in Siheung site whereas three generations in Osan site during the present study. The result indicated that LGM had at maximum three generations per year. The density of LGM in Osan was higher in the upper crown of the host trees than middle or lower part. In Siheung, LGMs were distributed more on the exterior of the lower crown than the interior. The average number of larvae per gall was $3.3{\pm}0.1$ and $2.8{\pm}0.1$ individuals per leaf in Osan and Siheung, respectively.