• Title/Summary/Keyword: roll angle

Search Result 403, Processing Time 0.023 seconds

Using Lateral Acceleration and Yaw Rate, Sliding Observer Design for Roll Angle (횡방향 가속도 및 요 속도를 이용한 차량의 롤 각 추정기 설계)

  • Lee, Jong-Kuk;Kwon, Young-Shin;Lee, Hyeong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.38-46
    • /
    • 2011
  • This paper presents roll angle estimator which used Kalman filter. Recently, the uses of the ELSD (Electronic Limited Slip Differential) and TVD(Torque Vectoring Differential) for vehicle yaw control are studied in many researches. However the roll angle can be negative effect of ELSD and TVD control. Therefore the information of roll angle can be used for vehicle yaw control. Moreover it can be used for rollover prevent control. Recently, most of the vehicles use lateral acceleration and yaw rate sensor. In this paper, design of Kalman filter which used lateral acceleration and yaw rate information is developed. In this paper, in order to verify the estimator ability, the CarSim and Matlab/Simulink are used.

Evolution of strain states during Cross-roll rolling in AA 5052 sheet for varying cross-roll angle using FEM (유한요소 해석을 통한 AA 5052 판재의 Cross-roll 압연시 Cross angle에 따른 변형을 상태의 변화)

  • Kim, S.H.;Kang, H.G.;Kim, D.G.;Lee, J.S.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.95-98
    • /
    • 2008
  • In the present work, cross-roil rolling was rallied out using a rolling mill in which the roll axes are tilted by $5^{\circ},\;7.5^{\circ},\;10^{\circ}$ towards the transverse direction of the roiled sample. The evolution of strain states during cross-roll rolling was investigated by three-dimensional finite element method (FEM) simulation. Parallel to cross-roll rolling, normal-rolling using a conventional rolling mill was also carried out in the same rolling condition for clarifying the effect of cross-roll rolling. It turned out that three shear rate components were all introduced to the rolled sample by the cross-roll rolling process, while only one shear rate component operated during normal-rolling.

  • PDF

Development of Tilt angle measurement system of plastic thin-film using Position Sensitive Device (PSD를 이용한 플라스틱 박막 필름의 경사 각도 측정 시스템 개발)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.134-138
    • /
    • 2021
  • Various types of precision plastic thin films are used widely in high-performance displays, such as smartphones. For plastic thin-films manufactured by the Roll-to-Roll process, the film thickness must be measured and managed while moving. In the Roll-to-Roll process, wrinkles are generated when tension is applied to the film, which causes an inclination on the optical axis of the thickness gauge, resulting in a loss of accuracy. Therefore, this study attempted to develop an optical interference tomography measurement system. In this study, the tilt angle of the film was measured to correct the measurement value error in the thickness gauge caused by the tilt of the film. The system was constructed so that the laser was irradiated on the tilted film, and the laser reflected from the film was formed on the PSD. The relationship between the tilt angle of the film and the output value of the PSD was obtained experimentally. Using this, a device to measure the tilt angle of the film was constructed, and angle measurements were taken at a speed of 250,000Hz.

A Study of Aerodynamic Modelling for Fin Unfolding Motion Analysis (공력면 전개 모사를 위한 공력 모델링 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.420-427
    • /
    • 2008
  • For simulation of a fin unfolding motion for the various aerodynamic conditions, equations and moments applying to the unfolding fin were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with deflected fin, whose angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to fin deployment test results.

Elimination of Roll Interference by Increasing Radius of Variable Section Forming Roll (가변 단면 성형 롤의 반경 증가에 의한 롤 간섭 제거)

  • Kim, Kwang-Heui;Yoon, Moon-Chul;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • In this study, we investigated whether the interference occurring in forming roll surfaces could be eliminated by increasing the radius of the variable section forming rolls. The surfaces of the rolls capable of forming products with different flange heights and bend angles with the bend line tilted at an angle of 1° from the longitudinal axis were created using the general CAD software CATIA. Roll interferences were determined for the change in the forming roll radius. The minimum gaps between the upper and lower roll surfaces were measured for the change in the forming roll radius, and the roll interferences were calculated from the difference between the measured value and the thickness of the product. It was observed that the thickness of the product had a slight effect on the roll interference when the thickness was between 0.8 and 1.2 mm. It was also observed that the roll interference could be eliminated by increasing the roll radius.

Development of Horizontal Attitude Monitoring System for Agricultural Robots (농업 로봇 용 수평 자세 모니터링 시스템 개발)

  • Kim, Sung Deuk;Kim, Cheong Worl;Kwon, Ik Hyun;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • In this paper, we have development of horizontal attitude monitoring system for agricultural robots. A two-axis gyro sensor and a two-axis accelerometer sensor are used to measure the horizontal attitude angle. The roll angle and pitch angle were measured through the fusion of the gyro sensor signal and the acceleration sensor signal for the horizontal attitude monitoring of the robot. This attitude monitoring system includes GPS and Bluetooth communication module for remote monitoring. The roll angle and pitch angle can be measured by the error of less than 1 degree and the linearity and the reproducibility of the output signal are excellent.

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Roll Angle Estimation of a Rotating Vehicle in a Weak GPS Signal Environment Using Signal Merging Algorithm

  • Im, Hun Cheol;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.135-140
    • /
    • 2017
  • This paper proposes a signal merging algorithm to increase the signal-to-noise ratio (SNR) of a GPS correlator output to estimate the roll angle of a rotating vehicle in a weak GPS signal environment. Rotation Locked Loop (RLL) algorithm is used to estimate a roll angle using the characteristics that the power of the GPS signal measured at the receiver of a rotating vehicle varies periodically. First, delay times are calculated to synchronize GPS signals using satellites' and receiver's positions and the rotation frequency of a vehicle, and then correlator outputs are delayed in time and merged with each other, resulting in the increase of an SNR in a correlator output. Finally, simulations are conducted and the performance of the proposed algorithm is validated.

A study on the cutting punch shape about roll forming process (롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구)

  • Cheong, Mun-Su
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.