• Title/Summary/Keyword: rocket motor case

Search Result 63, Processing Time 0.02 seconds

Boots Gap Liner Casting Process Development of Solid Rocket Motor (고체 추진기관 적용 부츠갭 라이너 충진 공정 개발)

  • Kim, Yong-Woon;Kim, Jin-Yong;Lee, Won-Bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.211-214
    • /
    • 2007
  • Solid rocket motor that includes AL powder in propellant gets slag during static firing test. Slag is piled up to weak area in motor case and causes dangerous phenomena like explosion of motor. In this paper, It is shown that boots gap liner casting process was developed and static firing test was performed with better results.

  • PDF

Thermal Analysis for Solid Rocket Motor exposed to Fast Cook Off (급속가열 상황에 있는 고체 추진기관에 대한 열해석)

  • Doh, Young-Dae;Yoo, Ji-Chang;Kim, Chang-Kee;Lee, Do-Hyung;Ham, Hee-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.196-199
    • /
    • 2009
  • The most important thing is to analyze the Fast Cook Off problem of the solid motor case exposed to direct flame is a heat transfer analysis. Heat causes degradation and ignition of the propellant. To archive an acceptable reaction level in Fast Cook Off, the rocket motor case generally must fail structurally prior to propellant ignition. We investigate the responses of the solid motor case exposed to Fast Cook Off by using finite element method for the thermal analysis.

  • PDF

Study on the Debonding Detection Techniques of Liner/Propellant Interface of Rocket Motor (추진기관의 라이너/추진제 미접착 검출 기법 연구)

  • Kim, Dong-Ryun;Ryoo, Baek-Neung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.40-47
    • /
    • 2008
  • It is known that the adhesive interface testing of the rocket motor using the ultrasonic wave is superior to the other testing methods about the ability to economical detect the defects. But, the signal analysis of the ultrasonic wave takes a lot of time and efforts because the time interval of the transmitted pulse and the received pulse is too short to separate the reflected signals due to the multi-layers of the rocket motor. The ultrasonic testing of rocket motor have only applied to the automatic system about extremely limited areas like the debond in adhesive interface between the motor case and the insulator. In this study the new technique to detect the debond between the liner and the propellant using the property of the resonance and the lamb waves instead of the existing ultrasonic testing was described.

Study on the Debonding Detection Techniques of Liner/Propellant Interface of Rocket Motor (추진기관의 라이너/추진제 미접착 검출 기법 연구)

  • Kim, Dong-Ryun;Ryoo, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.55-59
    • /
    • 2007
  • It is known that the adhesive interface testing of the rocket motor which using the ultrasonic wave iS superior to the other testing methods about the economically detectable abiliη of the defects. But, the signal analysis of the ultrasonic wave takes too much time and effort that the time interval of the transmitted pulse and the received pulse is too short to be separated the reflected signals because the structure of the rocket motor is multi-layers. The ultrasonic testing of rocket motor have been only applied with automatic system about extremely limited area like the debond in adhesive interface between the motor case and insulator. In this study the new technique to detect the debond between the liner and the propellant using the property of the resonance and Lamb waves was described as comparing the existence ultrasonic testing.

  • PDF

A Study on Size Optimization for Rocket Motor with a Torispherical Dome (토리구형 돔 형상을 갖는 연소관의 치수 최적화 설계 연구)

  • Choi, Young-Gwi;Shin, Kwang-Bok;Kim, Won-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.567-573
    • /
    • 2010
  • In this study, we evaluated the structural integrity and weight of a rocket motor with a torispherical dome by size optimization. Size optimization was achieved by first-order and sub-problem methods, using the Ansys Parametric Design Language (APDL). For rapid design verification, a modified 2D axisymmetric finite-element model was used, and the bolt pre-tension load was expressed as function of the ratio of the cross-sectional area. The thickness of the dome and the cylindrical part of the rocket motor were selected as the design parameters. Our results showed that the weight and structural integrity of the rocket motor at the initial design stage could be determined more rapidly and accurately with the modified 2D axisymmetric finite-element model than with the 3D finite-element model; further, the weight of the rocket motor could be saved to maximum of 17.6% within safety limit.

Fast Cook-Off Test and Evaluation for HTPE IM Rocket Motor (HTPE 둔감 추진기관의 급속가열 시험 및 평가)

  • Lee, Do-Hyung;Kim, Chang-Kee;Yeon, Jeong-Mo;Jung, Jung-Young;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.167-170
    • /
    • 2009
  • Fast cook-off test with rocket motors was performed and characteristics of the results were analyzed. The material of the motor case was carbon epoxy composite. The motor was loaded with HTPE propellants to improve the insensitive munitions characteristics. In the tests, sound pressure and heat flux sensors were used to determine the category of response according to the standard. The reaction response of all of the HTPE motors tested by fast cook-off was judged as Type V burning.

  • PDF

Impact Test and Evaluation for HTPE IM Rocket Motor (HTPE 둔감 추진기관의 충격 시험 및 평가)

  • Kim, Chang-Kee;Lee, Do-Hyung;Yeon, Jeong-Mo;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.163-166
    • /
    • 2009
  • Bullet and fragment impact test with rocket motors was performed and characteristics of the results were analyzed. The material of the motor case was carbon epoxy composite. The motor was loaded with HTPE propellants to improve the insensitive munitions characteristics. In the tests, sound pressure and heat flux sensors were used to determine the category of response according to the standard. The reaction response of all of the HTPE motors impacted by bullet and fragment was judged as Type V burning.

  • PDF

A Development of Insensitive Munitions Technologies for Tactical Rocket Motors (고체추진기관 둔감화 기술 개발동향)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Hwang, Kab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.213-216
    • /
    • 2008
  • U. S. and NATO allies have recently increased their emphasis on reducing the hazards of tactical munitions that contain energetic materials and actively started many investigations on Insensitive munitions(IM) of missile propulsion. All subcomponents of rocket motor should be properly designed and understood to increase IM properties. Insensitive propellant, motor case, ignitor and mitigation devices are important components of IM technologies of rocket motors.

  • PDF

Effect of Diaphragm Thickness on Regression Rate Improvement in Hybrid Rocket Motor (다이아프램 두께 변화에 따른 하이브리드 로켓의 후퇴율 향상에 관한 연구)

  • Ryu, Sung-Hoon;Oh, Ji-Sung;Moon, Keun-Hwan;Kim, Hak-Chul;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • In this work, a study was conducted to investigate the effect of diaphragm thickness on the regression rate of the hybrid rocket motor. To observe the flow pattern and the recirculation zone, visualizations of combustion chambers with different diaphragm thickness (5mm, 10mm) were performed. It was found that the case with 5 mm thickness had a larger recirculation zone and therefore, had a higher regression rate than the case with 10mm thickness due to the increased residence time and heat transfer toward the fuel surface. Finally, it was concluded that the thickness of diaphragm can be a critical parameter for the enhancement of the regression rate.

The Trend of Mitigation Devices for Insensitive Munition of Solid Rocket Motor (고체 추진기관 둔감화를 위한 완화장치의 연구 동향)

  • Ryu Byung-Tae;Yoon Ki-Eun;Jung Jin-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Insensitive Munitions(IM) of solid propulsion system are defined as munitions that fulfil the performance and operational requirements, but will minimize the violence of a reaction when subjected to inadvertant stimuli. It should be clear that the reaction violence of rocket motor subjected to thermal stimuli can be mitigated by reducing confinement prior to propellant reaction. Devices designed to do this by venting the rocket motor case are commonly referred to as mitigation devices. The objective of this paper is to introduce the technical information related to the pyrotechnic mitigation devices for insensitive munition of solid rocket motor.

  • PDF