• 제목/요약/키워드: rock-forming minerals

검색결과 86건 처리시간 0.023초

Mineralogical Composition and Heavy Metal Concentrations in the Sediments of the Kumho River (금호강 하상 퇴적물의 광물성분 및 중금속 분포)

  • Kim, Byoung-Ki;Nam, Eun-Kyoung;Jung, Do-Hwan;Lee, Ji-Eun;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.291-300
    • /
    • 2006
  • This study has been carried out to reveal the mineralogical compositions, the concentrations of heavy metals, and related factors in the sediments of the Kumho River which is the main tributary of the Nakdong River. Even though this river flows in a short distance, it runs through different geology and industrial areas and can be a good candidate to study different geological and anthropogenic factors affecting the concentrations of heavy metals in the sediment. The major rock-forming minerals were quartz and albite. Minor amount of orthoclase, microcline, and amphybole were also identified. Clay minerals including illite, chlorite, kaolinite were associated with those minerals. In the downstream, no noticeable changes in species and amount of minerals were observed, indicating there is almost no influence on the mineralogical compositions from rock types. The concentrations of heavy metals in the sediments are in the order of Zn > Pb > Cu > Ni > Cr > Co > Cd. Following the downstream, the concentrations of heavy metals generally increase, except Pb. The regional increase of the heavy metal content is well correlated with the location of the tributary. Without changes in mineral compositions, the main factors controlling the heavy metal contents are the locations of pollutant sources. Except Pb and Ni, most of the concentrations of heavy metals were thought to be enriched by the past pollutant sources.

Deterioration Assessment and Conservational Scientific Diagnosis of the Stone Pagoda in the Bunhwangsa temple, Gyeongju, Korea (경주 분황사석탑의 풍화훼손도 평가와 보존과학적 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong
    • Journal of Conservation Science
    • /
    • 제18권
    • /
    • pp.19-32
    • /
    • 2006
  • The stone pagoda of the Bunhwangsa temple made by piling small brick-shaped stones. The major rock forming stone bricks are andesites with variable genesis. Rock properties of the pagoda roof stone suffer partly including multiple peel-offs, exfoliation, decomposition like onion peels, cracks forming round lines and falling off stone pieces. The stylobates and tabernacles in all the four directions the pagoda are mostly composed of granitic rocks. Those rock properties are heavily contaminated by lichens and mosses with the often marks of inorganic contamination by secondary hydrates that are dark black or yellowish brown. Within the four tabernacles and northern pagoda body situated to relatively high humidity. There are even light gray precipitate looking like stalactites between the northern and western rocks of the body Their major minerals are calcite, gypsum and clays. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Total rock properties of the pagoda are 9,708 pieces, among the all properties, fractured blocks are 11.0%, fall out blocks are 6.7% and covered blocks by precipitates are 7.0%, respectively. The pagoda has highly deteriorated the functions of the rock properties due to physical, chemical and biological weathering, therefore, we suggest that this pagoda has need to do long term monitoring and synthetic conservation researches.

  • PDF

Deterioration Analysis and Source Area on Rock Properties of the Seokgatap Pagoda in the Bulguksa Temple, Korea (불국사 석가탑의 풍화훼손도 분석 및 기원암의 산지추정)

  • Lee, Myeong-Seong;Lee, Chan-Hee;Suh, Man-Cheol;Choi, Seok-Won
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 한국문화재보존과학회 2004년도 제20회 발표논문집
    • /
    • pp.15-24
    • /
    • 2004
  • The Seokgatap pagoda composed of mainly alkali granite and other minor pink-feldspar granite, fine-grained granite, granodiorite, diorite, gabbro, and tuff. Despite the small loss and damage derived from joints, its peel-off and exfoliation are serious enough to cause the heavy deterioration on the stone surface. The chemical and petrological weathering has partly replaced the original rock-forming minerals with clay minerals and iron oxyhydroxides. Based on the petrogenesis, rock materials of the pagoda is very similar to rocks of Dabotap pagoda and the Namsan granite in the Gyeongju. The central fart of the pagoda has sunken highly, which caused all the corners to split and the structural transformation to become worse. The reverse V-shaped gaps between the materials have broken stones filled in a coarse way. The iron plates inserted between the upper flat stone laid on other stones and tile pagoda body in the north and east side has been exposed in the air and corroded, discoloring of the adjacent stones. The overall diagnosis of the Seokgatap pagoda is the deteriorated functions of the stone materials, which calls for a long-term monitoring and plans to reinforce the stone surfaces. But the main body including the pagoda roof stone needs washing on a regular basis, and the many different cracks should be fixed with glue by using the fillers or hardeners designed for stone cultural properties after removing the cement mortar. In case of the replacement of the stone materials with new stones, it's necessary to examine the pagoda for the center of gravity and support intensity of the materials. The structural stability of the pagoda can be attained by taking a reinforce measure in geotechnical engineering and making a drainage. The ground humidity, which has aggravated weathering and structural instability, should be resolved by setting up a humidity reduction facility. The contamination of lichens and bryophyte around the pagoda and on the surface is serious. Thus biochemical treatments should be given too in order to prevent further biological damages and remove the vegetation growing on the discontinuous planes.

  • PDF

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • 제45권5호
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.

Directional Variation of Apparent Elastic Constants and Associated Constraints on Elastic Constants in Transversely Isotropic Rocks (횡등방성 암석에서 겉보기 탄성정수의 방향성 변화와 탄성정수 제약조건)

  • Youn-Kyou Lee
    • Tunnel and Underground Space
    • /
    • 제33권3호
    • /
    • pp.150-168
    • /
    • 2023
  • The anisotropic behavior of rocks is primarily attributed to the directional arrangement of rock-forming minerals and the distribution characteristics of microcracks. Notably, sedimentary and metamorphic rocks often exhibit distinct transverse isotropy in terms of their strength and deformation characteristics. Consequently, it is crucial to gain accurate insights into the deformation and failure characteristics of transversely isotropic rocks during rock mechanics design processes. The deformation of such rocks is described by five independent elastic constants, which are determined through laboratory testing. In this study, the characteristics of the directional variation of apparent elastic constants in transversely isotropic rocks were investigated using experimental data reported in the literature. To achieve this, the constitutive equation proposed by Mehrabadi & Cowin was introduced to calculate the apparent elastic constants more efficiently and systematically in a rotated Cartesian coordinate system. Four transversely isotropic rock types from the literature were selected, and the influence of changes in the orientation of the weak plane on the variations of the apparent elastic modulus, apparent shear modulus, and apparent Poisson's ratio was analyzed. Based on the investigation, a new constraint on the elastic constants has been proposed. If the proposed constraint is satisfied, the directional variation of the apparent elastic constants in transversely isotropic rocks aligns with intuitive predictions of their tendencies.

Ore Minerals and Fluid Inclusions Study of the Kamkye Cu-Pb-Zn-Au-Ag Deposits, Repubulic of Korea (감계 동(銅)-연(鉛)-아연(亞鉛)-금(金)-은광상(銀鑛床) 광석광물(鑛石鑛物)과 유체포유물(流體包有物) 연구(硏究))

  • Lee, Hyun Koo;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • 제28권1호
    • /
    • pp.9-17
    • /
    • 1995
  • The Kamkye Cu-Pb-Zn-Au-Ag deposits occur as quartz veins that filled fault-related fractures of NW system developed in the Cretaceous Gyeongsang basin. Three major stages of mineral deposition are recognized: (1) the stage I associated with wall rock alteration, such as sericite, chlorite, epidote and pyrite, (2) the early stage II of base-metal mineralization such as pyrite, hematite, and small amounts of sphalerite and chalcopyrite. and the middle to late stage II of Cu-As-Sb-Au-Ag-S mineralization, such as sphalerite, chalcopyrite, galena with tetrahedrite, tennantite, pearceite, Pb-Bi-Cu-S system, argentite and electrum. (3) the stage III of supergene mineralization, such as covellite, chalcocite and malachite. K-Ar dating of alteration sericite is a late Cretaceous ($74.0{\pm}1.6Ma$) and it may be associated with granitic activity of nearby biotite granite and quartz porphyry. Fluid inclusion data suggest a complex history of boiling, cooling and dilution of ore fluids. Stage II mineralization occurred at temperatures between 370 to $220^{\circ}C$ from fluids with salinities of 8.4 to 0.9 wt.% NaCl. Early stage II($320^{\circ}C$, 2.0 wt.% NaCl) may be boiled due to repeated fracturing which opened up the hydrothermal system to the land surface, and which resulted in a base-metal sulfide. Whilst the fractures were opened to the surface, mixing of middle-late stage II ore fluids with meteoric waters resulted in deposition of Cu-As-Sb-Au-Ag minerals from low temperature fluids(${\leq}290^{\circ}C$). Boiling of ore fluids may be occured at a pressure of 112 bar and a depth of 412 m. Equilibrium thermodynamic interpretation of sphalerite-tetraherite assemblages in middle stage II indicates that the ore-forming fluid had log fugacities of $S_2$ of -6.6~-9.4 atm.

  • PDF

Infrared Emissivity of Major Minerals Measured by FT-IR (FT-IR을 이용한 중요 광물의 적외 방출도 스펙트럼 측정)

  • Lee, Yu-Jeong;Park, Joong-Hyun;Lee, Kwang-Mog
    • Atmosphere
    • /
    • 제25권4호
    • /
    • pp.601-610
    • /
    • 2015
  • This study measured the emissivity spectra of 5 major rock-forming minerals using a Fourier Transform Infrared (FT-IR) spectrometer in the spectral region of $650{\sim}1400cm^{-1}$. The mineral samples are quartz, albite, bytownite, anorthite, and sandstone. We compared emissivity spectra measured in this study with spectra provided by Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Arizona State University (ASU). The spectral features of emissivity such as Reststrahlen Band (RB) and Christiansen Feature (CF) locations were compared. Results showed that both CF and RB locations of emissivity spectra measured in this study were similar to those from ASTER and ASU. In the case of quartz, the RB was occurred in the region of $700{\sim}850cm^{-1}$ and $1050{\sim}1250cm^{-1}$. The spectral position of emissivity peak was in good agreement with the location of ASTER and ASU. For plagioclase (albite, bytownite, and anorthite), the spectral location of CF was shifted toward larger wavenumber and the emissivity value was increased in the region of $870{\sim}1200cm^{-1}$ with Ca percentage. The CF of anorthite and bytownite was occurred at $1245.79cm^{-1}$, and that of albite was occurred at $1283.79cm^{-1}$. We also confirmed that emissivity feature of sandstone includes both emissivity features of quartz and calcite. However, there were some differences in the magnitude of emissivity and locations of RB and CF. These were due to the differences in measurement methods, and differences in particle size and temperature of samples.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil (불포화 이암풍화토의 동적거동)

  • 배중선;이주상;김주철;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.541-548
    • /
    • 2001
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

  • PDF

Mineralogical Characteristics of Calcite observed in the KAERI Underground Research Tunnel (고준위폐기물 지하처분연구시설(KURT)에서 관찰되는 방해석의 광물학적 특징)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Cho, Won-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.239-246
    • /
    • 2006
  • KAERI Underground Research Tunnel (KURT) was recently constructed through the site investigation from the yea. of 2003 at KAERI site, Dukjin-dong, Yuseong-gu, Daejeon city. The geo-logic setting of the site has been slightly metamorphosed. There are small fractures developed in the rock and several kinds of secondary filling minerals exist in the fractures. We examined mineralogical characteristics of fracture-filling calcite, which is not only largely distributed, but also can significantly affect the radionuclides migration. The calcite is found along fractures like other secondary minerals, forming thick veins in part. Most calcite-filled fractures contain quartz, iron oxides, and dolomite as minor minerals. The calcite crystals show an characteristic appearance with an uniformly oriented growth, coated with goethite on the edge and the etch-pit sites of their surface. Some calcite crystals have been newly formed by the precipitation of elements dissolved from the tunnel shotcrete wall, and their morphology changed according to the chemistry and flow of groundwater. The calcite can modify the groundwater chemistry and significantly affect the sorption behavior of radionuclides. The characteristic crystal structure and surface morphology of the calcite examined in the KURT site will be used as important basic data for the radionuclide migration experiment in the future.

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -III. Soil Mineralogy of Sand and Silt Size Fractions in the Soils (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) -III. 모래와 미사중(微砂中)에 토양광물(土壤鑛物)의 특성비교(特性比較))

  • Um, Myung-Ho;Um, Ki-Tae;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 1992
  • Sand and silt size fractions of soils which were derived from five major rocks of granite, granite-geniss, limestone, shale, and basalt in Korea were studied. Determination of the mineralogical and chemical composition of rock-forming mineral breakdown which is accompanied by the formation of secondary minerals. The chemical composition of the fraction was largely changed with the content of weatherable and resistant soil minerals such as ferromagenesian minerals, carbonates, and guartz. In the sand fractions of the soils from the granite and granite-gneiss, chlorite-vermiculite mixed layers seem to be an intermediate weathering product prior to the weathering state of the formation of vermiculite from chlorite. Kaolin minerals in the silt fractions of the soils from the granite-gneiss are considered to be formed by the pseudomorphic transformation of plagioclase. In the sand and silt fractions of the soils derived from the limestone, large amount of calcite and dolomite seems to have been inherited from the parent rocks. The primary chloritc, micas, and feldspars are considered to be formed from the weathering remains after leaching of carbonate minerals during the soil formation. In the residual soils(Gueom series) developed from the basalt, quartz and micas were coexisted with plagioclase and augite inherited from the parent rock.

  • PDF