• Title/Summary/Keyword: robust servo

Search Result 253, Processing Time 0.032 seconds

Track-following Control under Disk Surface Defect of Optical Disk Drive Systems (광디스크 드라이브의 디스크 표면 결함에 대한 트래킹 제어)

  • Jeong, Dong-Seul;Lee, Joon-Seong;Chung, Chung-Choo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.56-64
    • /
    • 2006
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives to reject disk runout was recently proposed based on both Coprime Factorization(CF) and Zero Phase Error Tracking(ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo systems can detect only racking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Therefore, it is very effective in runout control. Furthermore, this method can be applied to defective optical disk like surface defects on disk. Numerical simulation and experimental result show the proposed method effective.

  • PDF

A Study on the Position Control of Electrohydraulic Servo System Using Adaptive Sliding Mode Control (Adaptive Sliding Mode Control을 이용한 전기유압식 서어보시스템의 위치제어에 관한 연구)

  • Hyun, Jang-Hwan;Lee, Chug-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.143-157
    • /
    • 1994
  • This paper is concerned with the position control of electrohydraulic servo system under parameter variation. An adaptive sliding mode control which uses the direct parameter estimation scheme, is proposed to design a robust controller for fast and accurate control of the system. It is shown that the adaptive sliding mode control algorithm is robust and effective in attaining fast and accurate position control of system under time-dependent parameter variation. It is also shown experimentally that chattering phenomena in a sliding mode control can significantly be reduced by using boundary layer technique, and that new approach in sliding mode control introducing a term proportional to the distance between the current state and the sliding surface in the control law is effective to obtain fast response and to increase stability of the system. Computer simulation on the dynamic performance of the control system is also presented.

  • PDF

A Novel Robust Controller Design using Robust Internal-loop Compensator (강인 내부 보상기를 이용한 새로운 강인 제어기 설계)

  • Choi, Hyun-Taek;Suh, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.987-995
    • /
    • 1999
  • A new robust controller design methodology for single-input single-output systems is proposed, where the proposed controller consists of a conventional or optimal servo controller at the outer loop as well as the robust internal-loop compensator(RIC) to eliminate the model uncertainty and external disturbance. It is shown that RIC with finite gain can make actual systems be nominal models within a prespecified error bound. And, it is also shown that RIC-based system is robustly stable regardless of input saturation. Several numerical examples are illustrated to show validities of the proposed robust controller.

  • PDF

Self-tuning Control of DC Servo Motor Taking into Account of Load Variation (부하변동을 고려한 직류 서어보전동기의 자기동조제어에 관한 연구)

  • Lee, Yoon-Jong;Oh, Won-Seok;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.430-433
    • /
    • 1988
  • An adaptive control system for D.C servo drive is developed via minimum variance control theory. The problem of designing this controller under varying load conditions is discussed. A robust self tuning controller that can track a constant reference and reject constant load disturbance is developed. Simulation study shows that the controller has excellent adaptation, capability as well as transient recovery under load changes.

  • PDF

Design of a Robust Turret-Gun Servo Controller Using LQG/LTR Method (LQG/LTR 방법을 이용한 강인한 터렛서보 제어기 설계)

  • Kim, In-Hwan;Kim, Jong-Hwa;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.66-69
    • /
    • 1989
  • In this paper, the LQG/LTR design method is applied of the third order linear time invariant plant model which is the SISO turret-gun servo-mechanism. The dynamic characteristics and the performance of the LQG/LTR controller are analyzed by the computer simulation, and compared with those of PID controller which has been already applied to the turret servomechanism under the sane design specifications.

  • PDF

A Study for Dynamic Positioning Control of Floating Platform(I)- Numerical Simyulation by a Servo System Design Method - (부유식 구조물의 동위치제어에 관한 연구( I )-서보계 구성법에 의한 수치시물레이션-)

  • 김성근;유휘룡;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.79-90
    • /
    • 1993
  • A design method of DPS control algorithm for adpting rotable thruster is introduced by applying servo system design method and the control algorithm is evaluated on the basis of the results of computer simulations performed for a semi-submersible 2-lower hull 8-column type platform. It is observed from the simulation results that position error due to the irregular drifting forces becomes zero after very short regulating time and dynamic positioning system is robust in spite of random disturbance.

  • PDF

Design of servo system based on VSS Observer (VSS 관측기를 이용한 서보계의 설계)

  • 심귀보;김성현;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.442-445
    • /
    • 1991
  • In the physical system, if we can precisely control an acceleration and force, we can improve the performance of their integral values, velocity and position. From this point of view, in this paper we try to use an obverser which is constructed by using Variable Structure System for estimating the acceleration in the system with the bounded unknown disturbance and the parameter mismatching. To obtain the robust control performance, the VSS with sliding mode is adopted in the design of the servo controller.

  • PDF

The robust controller design for linear multivariable servo mechanism using switching dynamics (스위칭 동태방정식을 이용한 선형 다변수서보메카니즘에 대한 견고한 제어기 설계)

  • 박귀태;곽군평;김동식;최중경;주영중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.535-540
    • /
    • 1989
  • This paper presents an approach for designing a linear multivariable servo mechanism for the case of constant and time varying disturbances. In this paper, we use an "observer-based" approach to consider the disturbance vector as states of the system and the resulting servomechanism design involves the design of an asymptotic observer which estimates both the actual plant states and the disturbance states. The design makes use of switching dynamics instead of switching logics to obtain the sliding mode and from the switching dynamics we can remove the undesirable chattering phenomena.phenomena.

  • PDF

A study of robust controller design for turret servo system (터렛 서보시스템의 강인한 제어기 설계연구)

  • 김인환;김종화;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.22-27
    • /
    • 1989
  • In this paper influences of disturbances and Modeling errors are qualitatively for the linear approximation model of turret servo system, and then LQG/LTR Control theory is applied to linear approximation model in order to design a controller which satisfies robustneas/stability for the modeling errors. Finally the performance and robustness of designed controller for the given plant are verified through the simulation.

  • PDF

A study on the controller design of gun/turret servo system (포/포탑 구동 시스템의 제어기 설계에 관한 연구)

  • 이석재;정오진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.718-723
    • /
    • 1992
  • A hydraulic gun/turret servo system requires fast and robust controller performance because of severe operating condition and precise target tracking objective. Digital controllers are able to satisfy this requirement due to high speed electronic device. The purpose of this study is to compare with pre-EPU with new-designed optimal, adaptive controllers by simulating nonlinear hydraulic simulation program. The designed digital controller shows good tracking performance and robustness to disturbance.

  • PDF