• Title/Summary/Keyword: robust learning

Search Result 522, Processing Time 0.021 seconds

RLDB: Robust Local Difference Binary Descriptor with Integrated Learning-based Optimization

  • Sun, Huitao;Li, Muguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4429-4447
    • /
    • 2018
  • Local binary descriptors are well-suited for many real-time and/or large-scale computer vision applications, while their low computational complexity is usually accompanied by the limitation of performance. In this paper, we propose a new optimization framework, RLDB (Robust-LDB), to improve a typical region-based binary descriptor LDB (local difference binary) and maintain its computational simplicity. RLDB extends the multi-feature strategy of LDB and applies a more complete region-comparing configuration. A cascade bit selection method is utilized to select the more representative patterns from massive comparison pairs and an online learning strategy further optimizes descriptor for each specific patch separately. They both incorporate LDP (linear discriminant projections) principle to jointly guarantee the robustness and distinctiveness of the features from various scales. Experimental results demonstrate that this integrated learning framework significantly enhances LDB. The improved descriptor achieves a performance comparable to floating-point descriptors on many benchmarks and retains a high computing speed similar to most binary descriptors, which better satisfies the demands of applications.

A Method of Robust Stabilization of the Plants Using DNP (DNP을 이용한 플랜트의 강인 안정화 기법)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1574-1580
    • /
    • 2008
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the Plants of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Optimal EEG Locations for EEG Feature Extraction with Application to User's Intension using a Robust Neuro-Fuzzy System in BCI

  • Lee, Chang Young;Aliyu, Ibrahim;Lim, Chang Gyoon
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.167-183
    • /
    • 2018
  • Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Human-like sign-language learning method using deep learning

  • Ji, Yangho;Kim, Sunmok;Kim, Young-Joo;Lee, Ki-Baek
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.435-445
    • /
    • 2018
  • This paper proposes a human-like sign-language learning method that uses a deep-learning technique. Inspired by the fact that humans can learn sign language from just a set of pictures in a book, in the proposed method, the input data are pre-processed into an image. In addition, the network is partially pre-trained to imitate the preliminarily obtained knowledge of humans. The learning process is implemented with a well-known network, that is, a convolutional neural network. Twelve sign actions are learned in 10 situations, and can be recognized with an accuracy of 99% in scenarios with low-cost equipment and limited data. The results show that the system is highly practical, as well as accurate and robust.

Corporate Innovation and Business Performance Prediction Using Ensemble Learning (앙상블 학습을 이용한 기업혁신과 경영성과 예측)

  • An, Kyung Min;Lee, Young Chan
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.247-275
    • /
    • 2021
  • Purpose This study attempted to predict corporate innovation and business performance using ensemble learning. Design/methodology/approach The ensemble techniques uses weak learning to create robust learning, which combines several weak models to derive improved performance. In this study, XGboost, LightGBM, and Catboost were used among ensemble techniques. It was compared and evaluated with traditional machine learning methods. Findings The summary of the research results is as follows. First, the type of innovation is expanding from technical innovation to non-technical areas. Second, it was confirmed that LightGBM performed best for radical innovation prediction, and XGboost performed best for incremental innovation prediction. Third, Catboost performed best for firm performance prediction. Although there was no significant difference in predictive power between ensemble techniques, we found that comparative analysis was necessary to confirm better prediction performance.

Bio-marker Detector and Parkinson's disease diagnosis Approach based on Samples Balanced Genetic Algorithm and Extreme Learning Machine (균형 표본 유전 알고리즘과 극한 기계학습에 기반한 바이오표지자 검출기와 파킨슨 병 진단 접근법)

  • Sachnev, Vasily;Suresh, Sundaram;Choi, YongSoo
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.509-521
    • /
    • 2016
  • A novel Samples Balanced Genetic Algorithm combined with Extreme Learning Machine (SBGA-ELM) for Parkinson's Disease diagnosis and detecting bio-markers is presented in this paper. Proposed approach uses genes' expression data of 22,283 genes from open source ParkDB data base for accurate PD diagnosis and detecting bio-markers. Proposed SBGA-ELM includes two major steps: feature (genes) selection and classification. Feature selection procedure is based on proposed Samples Balanced Genetic Algorithm designed specifically for genes expression data from ParkDB. Proposed SBGA searches a robust subset of genes among 22,283 genes available in ParkDB for further analysis. In the "classification" step chosen set of genes is used to train an Extreme Learning Machine (ELM) classifier for an accurate PD diagnosis. Discovered robust subset of genes creates ELM classifier with stable generalization performance for PD diagnosis. In this research the robust subset of genes is also used to discover 24 bio-markers probably responsible for Parkinson's Disease. Discovered robust subset of genes was verified by using existing PD diagnosis approaches such as SVM and PBL-McRBFN. Both tested methods caused maximum generalization performance.

Clustering Analysis of Science and Engineering College Students' understanding on Probability and Statistics (Robust PCA를 활용한 이공계 대학생의 확률 및 통계 개념 이해도 분석)

  • Yoo, Yongseok
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.252-258
    • /
    • 2022
  • In this study, we propose a method for analyzing students' understanding of probability and statistics in small lectures at universities. A computer-based test for probability and statistics was performed on 95 science and engineering college students. After dividing the students' responses into 7 clusters using the Robust PCA and the Gaussian mixture model, the achievement of each subject was analyzed for each cluster. High-ranking clusters generally showed high achievement on most topics except for statistical estimation, and low-achieving clusters showed strengths and weaknesses on different topics. Compared to the widely used PCA-based dimension reduction followed by clustering analysis, the proposed method showed each group's characteristics more clearly. The characteristics of each cluster can be used to develop an individualized learning strategy.

An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions (MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법)

  • Seo, Yangjin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.179-188
    • /
    • 2022
  • There have been many successful researches on a bearing fault diagnosis based on Deep Learning, but there is still a critical issue of the data distribution difference between training data and test data from their different working conditions causing performance degradation in applying those methods to the machines in the field. As a solution, a data adaptation method has been proposed and showed a good result, but each and every approach is strictly limited to a specific applying scenario or presupposition, which makes it still difficult to be used as a real-world application. Therefore, in this study, we have proposed a method that, using a data transformation with MFCCs and a simple CNN architecture, can perform a robust diagnosis on a target domain data without an additional learning or tuning on the model generated from a source domain data and conducted an experiment and analysis on the proposed method with the CWRU bearing dataset, which is one of the representative datasests for bearing fault diagnosis. The experimental results showed that our method achieved an equal performance to those of transfer learning based methods and a better performance by at least 15% compared to that of an input transformation based baseline method.