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Summary 
Energy consumption has grown alongside dramatic 
population increases. Statistics show that buildings in 
particular utilize a significant amount of energy, worldwide. 
Because of this, building energy prediction is crucial to best 
optimize utilities’ energy plans and also create a predictive 
model for consumers. To improve energy prediction 
performance, this paper proposes a ResNet-LSTM model 
that combines residual networks (ResNets) and long short-
term memory (LSTM) for energy consumption prediction. 
ResNets are utilized to extract complex and rich features, 
while LSTM has the ability to learn temporal correlation; 
the dense layer is used as a regression to forecast energy 
consumption. To make our model more robust, we 
employed Huber loss during the optimization process. 
Huber loss obtains high efficiency by handling minor errors 
quadratically. It also takes the absolute error for large errors 
to increase robustness. This makes our model less sensitive 
to outlier data.  Our proposed system was trained on 
historical data to forecast energy consumption for different 
time series. To evaluate our proposed model, we compared 
our model’s performance with several popular machine 
learning and deep learning methods such as linear 
regression, neural networks, decision tree, and 
convolutional neural networks, etc. The results show that 
our proposed model predicted energy consumption most 
accurately.  
Keywords: 
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1. Introduction 

Growing populations and economies require increased 
energy resources. Statistics show that buildings in particular 
utilize a significant amount of energy, worldwide. For 
instance, the buildings in China consumed around 28% of 
the country’s total electricity usage, an amount that grew to 
35% in 2020. Similarly, the buildings in the United States 
consume about 39% of their total energy [1]. Because 
buildings use significant energy resources, their energy 
utilization should be more efficiently managed. One 

strategy for achieving this is energy consumption prediction, 
which assists building managers in reducing energy 
consumption and thereby improving their energy utilization 
rate [2]. Additionally, accurate energy prediction models 
can help in balancing power consumption with its 
production, which can lower both resource waste and 
operating expenses.  

 In the past decades, a wide range of prediction 
approaches have been developed for building energy 
consumption prediction. In general, these energy predictive 
models can be categorized into two main classes:  physical 
models and data-driven models. The former, also called 
white-box or forward models, are based on physical laws, 
as the name suggests. These models need information about 
a building’s HVAC system, for example, in order to predict 
energy consumption accurately. Software such as 
EnergyPlus and TRNSYS make use of physical models. 
This first class of model is most effective when introduced 
at building design; they are less effective for existing 
buildings due to time and budget necessary to calibrate the 
model and locate appropriate parameters.  [3].  

 Data-driven models, on the other hand, utilize 
historical data to train a predictive model to discover the 
hidden relationship between the outcome (in this case, the 
building’s energy consumption) and the input features such 
as the day and time, building equipment information, 
weather and building information, tenant data, and 
operational schedule to understand energy behavior using 
statistical, machine learning, and deep learning methods. 
These methods construct a model that predicts future energy 
consumption based on previous data.  Data-driven models 
are simple and flexible, and have thus achieved remarkable 
interest from researchers [4]. Machine learning algorithms 
and neural networks have been successfully implemented in 
energy usage and time series forecasting [5].  

 Forecasting energy consumption can be done in 
short, medium-, and long-term timeframes. Short-term 
models forecast a building’s power consumption for the 
next few hours, up to one day.  Mid-term models forecast 
power connumeration for a few days, up to several months. 
Long-term forecasting can predict energy usage between 
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one and ten years [6]. Short-term energy forecasting is often 
the most valuable, because it is easier to identify practical 
energy-saving measures using hourly data. This makes the 
forecast more accurate, which is fundamental in operating 
smart buildings and lowering power consumption [7].  

 In this paper, we propose a ResNet-LSTM model 
that combines residual networks (ResNets) [8] and long 
short-term memory (LSTM) [9] for energy consumption 
prediction. Our proposed system was trained on historical 
data to forecast energy consumption with a different time 
series.  ResNets are utilized to extract complex and rich 
features, while LSTM has the ability to learn temporal 
correlation; the dense layer is used as a regression to 
forecast energy consumption. To make our model more 
robust, we employed Huber loss during the optimization 
process. Huber loss obtains high efficiency by handling 
minor errors quadratically. It also takes the absolute error 
for large errors to increase robustness. This makes our 
model less sensitive to outlier data. The contributions of this 
paper can be summarized as follows: 

 We proposed a ResNet-LSTM model for energy 
consumption prediction that combines ResNet blocks 
to extract complex and rich features, and an LSTM that 
has the capability of bridging long time lags between 
inputs over arbitrary time intervals. The use of this 
LSTM increases the model’s effectiveness, because it 
can identify temporal patterns at varying frequencies. 
This is beneficial in the prediction of energy 
consumption over a given time. 

 We used Huber loss to train our ResNet-LSTM to 
provide generalization. Huber loss is more robust 
against outliers and better at understanding diverse data. 

The rest of our paper is structured as follows: the next 
section describes related works. Sec 3 explains our model 
design. Sec 4 presents and discusses the results. Finally, Sec 
5 presents the conclusion and future works. 

2. Related Works  

Several forecasting techniques have been applied to 
energy consumption problems in the past twenty years. 
These include AI methods, neural networks, and machine 
learning, deep learning, and genetic algorithms. These are 
utilized most often because they build an intelligent system 
capable of identifying hidden cues in the data. 

Machine learning methods are widely implemented for 
predicting energy consumption and control purposes. The 
basic premise is that these models use historical data to 
identify mathematical models and predict future energy 
consumption. Ahmad et al. [10] compared the performance 
of neural networks and random decision for predicting the 
hourly energy consumption of a hotel in Madrid. They 

found that neural networks performed better than random 
forest with small differences in term of mean squared error. 
Tso et al. [11] employed a decision tree algorithm to build 
an energy predictive model in Hong Kong. Wang et al. [12] 
estimated the hourly energy usage for two educational 
buildings using random forest. They found that different 
types of input variables, such as time factors, weather 
conditions, and building occupancy, produced reliable 
prediction. Paudel et al. [13] developed a model based on 
support vector machine for estimating the energy demand 
in a low-energy building. The authors used instance 
selection to create a small, representative dataset instead of 
using the full training set. The results showed that the model 
trained on the small dataset outperformed the model that 
trained on all the data. 

Many studies have shown that a blend of linear and 
nonlinear models promotes higher accuacy than any single 
linear or nonlinear model. One of the most popular of these 
models are autoregressive integrated moving averyage 
(ARIMA) models. They have been applied across 
disciplines to create hybrid models with higher accruacy.  
[14]. As a result, Khashei & Bijari [15] exploited neural 
networks and ARIMA to build a hybrid model for 
forecasting energy consumption. In linear modeling, 
ARIMA models amplify the linear structures within the data 
to better train the neural networks for electricity 
consumption prediction. Li et al. [16] proposed a hybrid 
model called iPSO-ANN  to predict the hourly electricity 
consumption using neural networks. They used a particle 
swarm pptimization algorithm to update the weights of the 
neural networks to minimize the error rarte. PCA was 
utilized to remove redundant information and reduce the 
dimensionility of the input features.  Abedinia et al. [17] 
used genetic algorithms and intersection theory to create a 
hybrid model and select the most relevant, and least 
redundant, features.  

Qiu et al. [18] proposed an ensemble deep learning 
model that combined a deep belief network and support 
vector regression. The outputs of several deep belief 
networks were fed into support vector regression for 
prediction for power forecasting.  Chengdong et al. [19] 
utlized a deep stacked autoencoder to extract discrimatrive 
features. They then employed extreme machine leanring 
(ELM) as a predictor to achieve accurate prediction ouputs. 
Deep autoencoders are applied widely for converting a 
high-dimensional input into a lower deimensitonal input, 
and the research has shown that deep autoencoders are more 
effective than PCA to reduce dimensionality. Somu et al. 
[20] proposed a 𝑘CNN- LSTM framework for electricity 
consumption forecasting. K-means algorithm is used to 
discover patterns in energy consumption. Convolutional 
neural networks are then used for extracting complex  
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features. LSTM neural networks manage long-term 
dependencies by modeling temporal data in the time series. 
Several techniques, such as transfer learning and data 
generation, are employed to build accurate energy 
forecasting and overcome problems such as insufficient 
dataset for training predictive models. For example,  Tian et 
al. [21] exploited generative adversarial nets to generate 
parallel data training. This data was then combined with the 
original data to train different machine learning models 
such as BPNN and support vector regression. The results 
showed that the models trained on mixed data performed 
better than the models trained on the original data alone. 
Hooshmand et al. [22] built an energy predictive system 
based on convolutional neural networks (CNN). They 
applied transfer learning to address the challenge of 
insufficient data to train their CNN. The results showed that 
transfer learning improved the model’s performance 
significantly as compared to existing forecasting models.   

3. Model design 

Our ResNet-LSTM model consists of three main parts: 
The first is a residual network, which is composed of 
convolutional layers, max pooling, and batch normalization 
layers, which extract useful features. The second part 
exploits the features generated by the LSTM and the fully 
connected layers. The last part is Huber loss, which 
optimizes our model during training to reduce the error rate. 
The ResNet architecture is illustrated in Fig. 1. In this 
section, we provide a description of the core components in 
our proposed model.  

3.1 Residual networks 

ResNets have shown superior results in various 
challenging tasks. They simplify deep network training by 

bypassing signals from one layer to the next via identity 
connections.  
 
ResNets use residual blocks as illustrated in Fig. 2, 
including skip connections, which are a shortcut path for 
gradient flow. This reduces issues such as vanishing 
gradients, even if the network is too deep. The element-wise 
addition of gradients is carried out in residual blocks. 
ResNets are employed to extract complex and abstract 
features. This is because skip connections are beneficial in 
the collection of historical data and the reduction of lost 
features and information; this allows the model to learn and 
extract richer features. Each residual block consists of two  
1D convolutional layers with a filter size of 1, followed by 
batch normalization and a ReLU activation function.   
 

 
Fig. 1 The structure of Residual block in the ResNet-LSTM model. Each 
Residual block consists of two 1D convolutional layers, ReLU activation 
function, and batch normalization layer. 

3.2 LSTM 

LSTM [9] is a special type of recurrent neural network 
(RNN) designed to address vanishing gradients  in RNNs. 
A gate control mechanism prevents long-term dependence, 
and is well suited for natural language generation as well as 
time series processing and prediction. Fig. 3 shows a basic 
LSTM neural network. It consists of a memory block, which 
contains a memory cell and three gates to control that cell: 
the input, output, and forget gates. The forget gate is 

Fig. 1 Architecture of ResNet-LSTM. 
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designed to determine which information needs to be 
retained and which needs to be forgotten. The forget gate 
output is computed as follows: 
 

       𝑓 =𝑎 𝑊 𝑈 ℎ 𝑏 )     (1) 
 
where 𝑊  is a weight matrix, ℎ  indicates the output of 
the previous cell, and 𝑎 is a sigmoid activation function to 
identify the information that must be preserved. If the value 
of the output is close to zero, the information should be 
forgotten. If it is closer to 1, that means it should be retained 
[23].  

The input gate is built to select which information will 
be updated using sigmoid activation. It uses a tanh 
activation function to obtain the 𝐶  value, which is then 
updated from 𝐶  to 𝐶 . The calculations are done using 
the following equations: 

        𝑖 𝑊+𝑥 +𝑈 𝑖ℎ +𝑏 ) 
 
   (2) 

       𝐶 tanh 𝑊𝑥 𝑈 ℎ 𝑏  
 
   (3) 

       𝐶 =𝑓 .𝐶  𝑖 .𝐶  
 
   (4) 

 
The output gate calculates the current information 

output. It is filtered using a sigmoid activation function, 
which obtains 𝑜 . The tanh activation function is then used 
to acquire the desired information ℎ : 

𝑜 a 𝑊 𝑥 𝑈 ℎ 𝑏  
 
   (5) 

ℎ 𝑜  . tanh 𝐶  
 
   (6) 

 

 
Figure 2. The structure of an LSTM unit. 

3.3 Huber loss 

In supervised learning, loss functions have a significant 
role in obtaining accurate results. Therefore, selecting the 
appropriate loss function, based on the noise within the 
training set, is critical in achieving a generalizable 
performance. To make our model more robust, we 
employed Huber loss instead of mean squared error, which 
is a combination of mean squared error and mean absolute 
error. Huber loss is a quadratic function (MSE) when the 
error between the target and predicted outputs is small, and 
a linear function when the errors are larger. Because of this, 
Huber loss handles outliers and diverse data better than 
other options.  Huber loss is defined as follows: 
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(7) 

Where 𝑦  indicates the target output for example 𝑖  , 𝑦  
indicates the predicted output for example 𝑖, 𝑛 represents 
the number of training set, and 𝛿 is the hyperparameter that 
defines the threshold for the loss function to transfer from 
quadratic to linear.  
 

The CNN-LSTM model consists of two residual blocks 
for feature extraction. Then, the extracted features are fed 
into an LSTM layer to learn the temporal correlation. The 
final four layers are dense layers. The last dense layer 
consists of one neuron with a linear activation function to 
predict energy consumption. Each residual block consists of 
two 1D convolutional layers, a batch normalization layer, 
and 1D max pooling.   

4. Experimental results and discussion  

4.1 Dataset 

We used the PJM East region dataset (PJMER), which 
estimates the hourly energy consumption in megawatts for 
the eastern United States. The dataset consists of 145,366 
records of hourly energy consumption data from 2002 to 
2018. The dataset consists of two columns: The first is a 
datetime input variable, which contains information about 
both data and time. The second contains the energy 
consumption in megawatts. We have split the datetime into 
eight features as follows: hour, day of week, quarter, month, 
year, day of year, day of month, and week of year. Table 1 
provides a descriptive summary about the dataset, such as 
the min, max, mean, standard deviation, skew, and kurtosis.  
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Table 1. Statistical information about PJMER dataset 

Statistic value Value 
Min 14544.00 

Max 62009.00 

Mean 32080.22 

Standard deviation 6464.01 

Skew 0.739 

Kurtosis 0.736 

Min 14544.00 

Max 62009.00 

 
The dataset records from 2002 to 2015 were used to 

train the model, and the years 2016, 2017, and 2018 were 
used for testing, as shown in Fig. 4. The figure also shows 
the hourly energy consumption prediction for PJMER. The 
dataset is normalized between 0 and 1 using a min-max 
technique.  
 

 
Fig. 4 Hourly energy consumption from the PJMER dataset, from 2002 to 
2018. The data from 2002 to 2015 was used for training, and the data from 
2016 to 2018 was used for testing. 

4.2 Experimental setup and evaluation matrices 

The whole model was built in Python. The ResNet-
LSTM was developed using the TensorFlow framework. 
Several machine learning algorithms were applied via the 
sklearn library. Huber loss was minimized using an Adam 
optimizer during the optimization process with a learning 
rate of 0.002, a batch size set to 128, and the total number 
of epochs at 100. Dropout was applied with dense layers 
with a dropout rate of 0.3 to reduce overfitting. The value 
of  𝛿  set to 1.  
 
In this work, we evaluated the performance of the models 
using mean squared error (MSE), mean absolute error 
(MAE), and root-mean-squared error (RMSE). They 
equations are defined, respectively, as follows: 

𝑀𝑆𝐸
1
𝑛
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where 𝑦  is the actual value (correct energy consumption) 
for 𝑖-example, and 𝑦  is the predicted output from the model 
for 𝑖-example. 

4.3 Results and Discussion 

To validate the effectiveness of the ResNet-LSTM 
presented in this paper, we compared our ResNet-LSTM 
with the most popular predictive models such as linear 
regression, neural networks, support vector regression, 
convolutional neural networks, and LSTM. The results, as 
shown in Table 2 and Fig. 5-7, illustrate that our ResNet-
LSTM obtained the best performance among all other 
prediction models. It also has the lowest error in terms of 
MSE, MAE, and RMSE. The RMSE of our ResNet-LSTM 
is 4246.72, the MSE is 18034620.37, and the MAE is 
3256.85.  

Table 2.  The results of the MSE, MAE, RMSE comparisons among 
different prediction models.  

Algorithm MSE MAE RMSE 
Linear regression 32471863.78 4586.08 5698.41 
Support vector 
regression 

33910528.53  4492.44 5823.27 

Neural networks 32043511.08 4547.90 5660.69 
Decision Tree 26260089.45  3732.70 5124.45 
CNN 28964812.00 3876.43 5381.89 
ResNet-LSTM 18034620.37 3256.85 4246.72 

The ResNet-LSTM has shown impressive results as 
compared to other forecasting models in terms of error 
value. Our model accurately predicts energy consumption 
for a particular hour within a day, week, month, or year.    

 

Fig. 5. The results of MSE among different predictive models.  
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 Fig. 6 The results of MAE among different predictive models.  

 

 
Fig 7. The results of RMSE among different predictive models. 

 

5. Conclusion 

Reliable energy consumption prediction models are of 
great significance for both energy planning and the 
enhancement of energy utilization. Deep learning 
algorithms have demonstrated powerful predictions and 
learning in time series applications. In this paper we 
employed the power of residual networks and LSTM to 
build a robust energy consumption prediction model. The 
proposed model is called ResNet-LSTM, and it is composed 
of residual blocks that function as feature extractors. LSTM 
can learn long-term dependencies in series, which is useful 
in time series prediction, and the fully connected layer is 
used as a regressor to predict energy consumption. The 
results showed that our ResNet-LSTM outperformed a 
variety of machine learning methods. Future work will 
focus on models that take into accounts other factors, such 
as the number of occupants, information about the building, 
information on holidays, etc. 
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