• 제목/요약/키워드: robust actuator

검색결과 235건 처리시간 0.028초

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

PZT 액튜에이터를 이용한 유연한 보의 강제 진동제어 (The Forced Vibration Control of a Flexible Beam using PZT Actuator)

  • 윤여흥;임숙정;권대규;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2001
  • Research on the forced vibration control of a flexible GFR composite beam using $\mu$-synthesis is performed on this paper. Modal analysis method and modal coordinates are introduced to obtain the state equations of the structural system. Using these equations, Robust control algorithm using $\mu$-synthesis is adopted to suppress the forced vibration of a flexible beam since the designed controller can considered plant uncertainty and external disturbance. Constant disturbance which is generated by shaking the flexible beam as I's natural frequency is effectively rejected by a PZT actuator. Simulations and experiments are carried out with the designed controller and effectiveness of forced vibration suppression strategy is verified by results.

  • PDF

원격조종 비행체의 이상허용 제어 (Fault tolerant control for remotely piloted vehicle)

  • 김대우;손원기;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF

수중운동의 표적추적성능 해석과 제어기 설계

  • 윤강섭;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.330-335
    • /
    • 1995
  • The actuator's response delay, disturbance and measurement noise can often cause a significant error in the target tracking of an underwater vehicle. The first purpose of this paper is error analysis about motion of an underwater vehicle when the closed loop system has actuator and disturbance and noise. The underwater vehicle is simulated for cases of various disturbances. The second purpose is robust controller design for the underwater vehicle with parameter uncertainty. So, two robust control methods are applied for the underwater vehicle. One is standard $H_{\infty}$ control, and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for $H_{\infty}$ control, and design parameters for time-varying switching surfaces are provided Simulations for the two controllers are carried out and their performances are analyzed.lyzed.

  • PDF

H$_\infty$ 제어기법을 적용한 소형 SMA 그립퍼의 힘 추적 제어 (Force Tracking Control of a Small-Sized SMA Gripper H$_\infty$ Synthesis)

  • 한영민;최승복;정재천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.391-395
    • /
    • 1996
  • This paper presents a robust force tracking control of a small-sized SMA gripper with two fingers using shape memory alloy(SMA) actuators. The mathematical governing equation of the proposed system is derived by Hamilton's principle and Lagrangian equation and then, the control system model is integrated with the first-order actuator dynamics. Uncertain system parameters such as time constant of the actuators are also included in the control model. A robust two degree of freedom(TDF) controller using H$_{\infty}$ control theory, which has inherent robustness to model uncertainties and external disturbances, is adopted to achieve end-point force tracking control of the two-finger gripper. Force tracking control performances for desired trajectories represented by sinusoidal and step functions are evaluated by undertaking both simulation and experimental works.

  • PDF

유압구동기를 채용한 로봇 매니플레이터에 대한 강인제어기 설계 (A Robust Controller Design for Robot Manipulators with Hydraulic Actuator Dynamics)

  • 박광석;황동환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.598-600
    • /
    • 1998
  • In this paper, a robust controller is proposed to achieve the accurate tracking for uncertain robot manipulators with hydraulic actuator dynamics. The parameter uncertainty can be quantified by the linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is proposed using the boundary layer technique around the sliding surface. It is shown that the smoothing controller guarantees the uniform ultimate boundedness of the tracking, error. The proposed controller shows good better tracking performance.

  • PDF

A Robust Fine Seek Controller Design Method Based on the Estimation of Velocity Disturbance

  • Lee, Moon-Noh;Shin, Jin-Ho;Kim, Seong-Woo;Lee, Jong-Min;Jin, Kyoung-Bog
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.243-250
    • /
    • 2007
  • This paper presents a systematic method of estimating a velocity disturbance occurring in the fine seek control system of an optical disk drive. A fine seek loop gain adjustment algorithm is introduced to accurately estimate the velocity disturbance in spite of the uncertainties of the fine actuator. The velocity disturbance can be estimated from a measurable velocity, a fine seek controller output, and a compensated fine actuator model. A robust fine seek controller can be designed by considering a minimum fine seek open-loop gain, calculated by the estimated velocity disturbance. The proposed controller design method is applied to the fine seek control system of a DVD rewritable drive and is evaluated through the experimental results.

초정밀 스테이지의 강인 제어 (Robust Control for a Ultra-Precision Stage System)

  • 박종성;정규원
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1094-1101
    • /
    • 2006
  • Recently, a ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator and ultra-precision linear encoder, is designed and developed. The system transfer function of the ultra-precision stage system was derived from the step responses of the system using system identification tool. A $H_{\infty}$ controller was designed using loop shaping method to have robustness for the system uncertainty and external disturbances. For the designed controller, simulations were performed and it was applied to the ultra-precision stage system. From the experimental results it was found that this stage could be controlled with less than 5nm resolution irrespective of hysteresis and creep.

비선형 외란관측기를 이용한 가변추력 고체추진기관의 강인 압력제어 (Robust Pressure Control of Variable Thrust Solid Propulsion System with Nonlinear Disturbance Observer)

  • 강대겸
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.59-64
    • /
    • 2021
  • In this paper, a mathematical pressure dynamics model for a variable thrust solid propulsion system with an electric actuator was derived from the mass conservation of gas. To solve the problem induced by modeling uncertainties in the propellant model and the dead zone of the actuator, a nonlinear pressure controller combined with a nonlinear disturbance observer was designed using a mathematical model of the system. The simulation results showed that the proposed pressure controller could reduce tracking errors compared to another conventional nonlinear controller even in situations where input disturbances were present.

신뢰성 있는 H 제어 : 선형 행렬 부등식 방법 (Reliable H Control : A Linlear Matrix Inequality Approach)

  • 이종민;김병국;김성우
    • 제어로봇시스템학회논문지
    • /
    • 제10권3호
    • /
    • pp.216-224
    • /
    • 2004
  • In this paper we address reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtainer by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via a numerical example. This paper addresses reliable output feedback control problem for a class of linear systems with actuator/sensor failures. An output feedback control method is proposed which stabilizes the plant and guarantees $H_\inftyt$-norm constraint against all admissible actuator/sensor failures. The controller can be obtained by solving some LMls that cover all failure cases. Effectiveness of this controller is validated via numerical example.