• Title/Summary/Keyword: robust

Search Result 10,544, Processing Time 0.035 seconds

ROBUST RELIABILITY DESIGN OF VEHICLE COMPONENTS WITH ARBITRARY DISTRIBUTION PARAMETERS

  • Zhang, Y.;He, X.;Liu, Q.;Wen, B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.859-866
    • /
    • 2006
  • This study employed the perturbation method, the Edgeworth series, the reliability optimization, the reliability sensitivity technique and the robust design to present a practical and effective approach for the robust reliability design of vehicle components with arbitrary distribution parameters on the condition of known first four moments of original random variables. The theoretical formulae of the robust reliability design for vehicle components with arbitrary distribution parameters are obtained. The reliability sensitivity is added to the reliability optimization design model and the robust reliability design is described as a multi-objection optimization. On the condition of known first four moments of original random variables, the respective program can be used to obtain the robust reliability design parameters of vehicle components with arbitrary distribution parameters accurately and quickly.

Robust Servo Design and Application for Optical Disk Drive using Robust Control Theory: QFT vs. H_inf (광 디스크 서보 설계를 위한 강건 제어 이론의 적용 및 평가: QFT vs. $H_{\infty}$)

  • Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.541-546
    • /
    • 2005
  • In this paper, the various uncertainties, which are generated in working of an optical disk drive, are discussed in details and the robust servo design considering the uncertainties are discussed. First, the classification of the uncertainties and the modeling process including that are treated. Then, the robust servo designs using QFT and $H_{\infty}$ theory are performed. Finally, the designed servo loops realized by DSP are applied to the real system. From these experiments, we proved that the robust servo design using QFT and $H_{\infty}$ have a good performance and a good robust stability when it compared with the conventional servo loop.

  • PDF

Robust EOQ Models with Decreasing Cost Functions (감소하는 비용함수를 가진 Robust EOQ 모형)

  • Lim, Sung-Mook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.99-107
    • /
    • 2007
  • We consider (worst-case) robust optimization versions of the Economic Order Quantity (EOQ) model with decreasing cost functions. Two variants of the EOQ model are discussed, in which the purchasing costs are decreasing power functions in either the order quantity or demand rate. We develop the corresponding worst-case robust optimization models of the two variants, where the parameters in the purchasing cost function of each model are uncertain but known to lie in an ellipsoid. For the robust EOQ model with the purchasing cost being a decreasing function of the demand rate, we derive the analytical optimal solution. For the robust EOQ model with the purchasing cost being a decreasing function of the order quantity, we prove that it is a convex optimization problem, and thus lends itself to efficient numerical algorithms.

Observer-based Feedback Controller Design for Robust Tracking of Discrete-time Polytopic Uncertain LTI Systems

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2427-2433
    • /
    • 2015
  • This paper presents an observer-based robust controller for constant reference tracking of linear time invariant systems with polytopic model uncertainties. To this end, this paper not only designs a robust integral controller gain but also suggests how to determine the robust observer gain and the observer model used in the observer. Since the observer model selection is not obvious due to the polytopic uncertainties, particular attention needs to be paid to that. This paper computes the robust controller and observer gains first. Then, the observer model is selected in a way that the whole closedloop is stable and LMIs are used in the middle of choosing the gains and observer model. Simulation examples show that the proposed observer-based feedback control successfully achieves robust reference tracking.

A Robust Principal Component Neural Network

  • Changha Hwang;Park, Hyejung;A, Eunyoung-N
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.625-632
    • /
    • 2001
  • Principal component analysis(PCA) is a multivariate technique falling under the general title of factor analysis. The purpose of PCA is to Identify the dependence structure behind a multivariate stochastic observation In order to obtain a compact description of it. In engineering field PCA is utilized mainly (or data compression and restoration. In this paper we propose a new robust Hebbian algorithm for robust PCA. This algorithm is based on a hyperbolic tangent function due to Hampel ef al.(1989) which is known to be robust in Statistics. We do two experiments to investigate the performance of the new robust Hebbian learning algorithm for robust PCA.

  • PDF

Robust Stabilization of Uncertain LTI Systems via Observer Model Selection (관측기 모델 선정을 통한 모델 불확실성을 갖는 선형 시불변 시스템 강인 안정화)

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.822-827
    • /
    • 2014
  • This paper presents a robust observer-based output feedback control for stabilization of linear time invariant systems with polytopic uncertainties. To this end, this paper not only finds a robust observer gain but also suggests how to determine the model used in the observer, which is not obvious due to model uncertainties in the conventional observer design method. The robust observer gain and the observer model are selected in a way that the whole closed-loop is stable by solving LMIs and BMIs (Linear Matrix Inequalities and Bilinear Matrix Inequalities). A simulation example shows that the proposed robust observer-based output feedback control successfully leads to closed-loop stability.

2 DOF robust performance controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형 시스템의 2 자유도 견실성능 제어기 설계)

  • 이갑래;정은태;최봉렬;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.43-53
    • /
    • 1997
  • A robust stability condition for linear systems with time delay in all variables and parameter uncertainties in all system matrices is derived. Robust performance condition that accounts for robust model-matching of closed loop system and disturbance rejection is also derived. Using the robust performance condition, robust $H^{\infty}$ controller and .mu.(sgructured singular value) controller with two-degree-of-freedom(2DOF) are designed. The controller structure is considered for $H^{\infty}$ controller, while uncertainity structure is considered for .mu. controller. Using the proposed method, $H^{\infty}$ and .mu. controllers for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.ce.

  • PDF

A Unified Approach to Discrete Time Robust Filtering Problem (이산시간 강인 필터링 문제를 위한 통합 설계기법)

  • Ra, Won-Sang;Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.592-595
    • /
    • 1999
  • In this paper, we propose a unified method to solve the various robust filtering problem for a class of uncertain discrete time systems. Generally, to solve the robust filtering problem, we must convert the convex optimization problem with uncertainty blocks to the uncertainty free convex optimization problem. To do this, we derive the robust matrix inequality problem. This technique involves using constant scaling parameter which can be optimized by solving a linear matrix inequality problem. Therefore, the robust matrix inequality problem does not conservative. The robust filter can be designed by using this robust matrix inequality problem and by considering its solvability conditions.

  • PDF

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

Robust Predictive Control of Robot Manipulators with Uncertainties (불확실 로봇 매니퓰레이터의 견실 예측 제어기 설계)

  • 김정관;한명철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.10-14
    • /
    • 2004
  • We present a predictive control algorithm combined with the robust robot control that is constructed on the Lyapunov min-max approach. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about the model, it is an important trend to design a robust control law that guarantees the desired properties of the manipulator under uncertain elements. In the preceding robust control work, we need to tune several control parameters in the admissible set where the desired stability can be achieved. By introducing an optimal predictive control technique in robust control we can find out much more deterministic controller for both the stability and the performance of manipulators. A new class of robust control combined with an optimal predictive control is constructed. We apply it to a simple type of 2-link robot manipulator and show that a desired performance can be achieved through the computer simulation.