• 제목/요약/키워드: robot manipulator sliding mode

검색결과 72건 처리시간 0.032초

Adaptive Approaches on the Sliding Mode Control of Robot Manipulators

  • Park, Jae-Sam;Han, Gueon-San;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.15-20
    • /
    • 2001
  • In this paper, adaptive algorithms on the sliding model control for robust tracking control of robust manipulators are presented. The presented algorithms use adaption laws for tuning both the sliding mode gain and the thickness of the boundary layer to reject a disconitnuous control input, and to improve the tracking performance. It is shown that the robustness of the developed adaptive algorithms are guaranteed by the sliding mode control law and that the algorithms are globally convergent in the presence of disturbances and modeling uncertainties. Computer simulations are performed for a two-link manipulator, and the results show good properties of the proposed adaptive algorithms under large mainpulator parameter uncertainties and disturbances.

  • PDF

로봇 매니퓰레이터에서 바운드 예측을 갖는 슬라이딩 모드 제어기 설계 (A Sliding Mode Controller with Bound Estimation for Robot Manipulator)

  • 이창민;윤원식;박성준;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2898-2900
    • /
    • 2000
  • A sliding mode control algorithm combined with an adaptive scheme, which is used to estimate the unknown parameter bounds. is developed for the trajectory control of robot manipulators. Simulated results show the validity to accurate tracking capability and robust performance.

  • PDF

An Elastic Joint Manipulator for a Human friendly robot

  • Takahashi, Takayuki;Murayama, Yasushi;Wang, Zhi-Dong;Nakano, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.44.3-44
    • /
    • 2001
  • This articles describes a novel design elastic joint manipulator for a mobile robot, which works in an office environment with humans. The primary goal of this manipulator design is safeness on collision and contact. To achieve this, each joint is made of an elastic element and this is driver with a high ratio gear tram. The performance was verified, however, it has a serious drawback. It produce vibration, due to the elastic joints and high ratio gear train. We found that a sliding mode controller has an excellent performance for reducing such vibration. Results of computer simulation and experiments are shown.

  • PDF

An Adaptive Tracking Controller for Vibration Reduction of Flexible Manipulator

  • Sung Yoon-Gyeoung;Lee Kyu-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.51-55
    • /
    • 2006
  • An adaptive tracking controller is presented for the vibration reduction of flexible manipulator employed in hazardous area by combining input shaping technique with sliding-mode control. The combined approach appears to be robust in the presence of severe disturbance and unknown parameter which will be estimated by least-square method in real time. In a maneuver strategy, it is found that a hybrid trajectory with a combination of low frequency mode and rigid-body mode results in better performance and is more efficient than the traditional rigid body trajectory alone which many researchers have employed. The feasibility of the adaptive tracking control approach is demonstrated by applying it to the simplified model of robot system. For the applications of the proposed technique to realistic systems, several requirements are discussed such as control stability and large system order resulted from finite element modeling.

A Full Order Sliding Mode Tracking Controller For A Class of Uncertain Dynamical System

  • Ahmad, M.N.;Nawawi, S.W.;Osman, J.H.S
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1853-1858
    • /
    • 2004
  • This paper presents the development of a full order sliding mode controller for tracking problem of a class of uncertain dynamical system, in particular, the direct drive robot manipulators. By treating the arm as an uncertain system represented by its nominal and bounded parametric uncertainties, a new robust fullorder sliding mode tracking controller is derived such that the actual trajectory tracks the desired trajectory as closely as possible despite the non-linearities and input couplings present in the system. A proportional-integral sliding surface is chosen to ensure the stability of overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Application to a three DOF direct drive robot manipulator is considered.

  • PDF

가변구조 이론에 의한 로보트 팔의 추종제어에 관한 연구 (I) (A Study on the tracking control of a robot manipulator using variable structure systems (I))

  • 이진걸
    • 한국정밀공학회지
    • /
    • 제2권1호
    • /
    • pp.41-52
    • /
    • 1985
  • This study is a step in developing the sliding mode control methodology for the robust control of a class of nonlinear time-varying systems. The methodology uses in its idealized form piecewise continuous feedback control, resulting in the state trajectory "sliding" slong a time-varying sliding surface in the state space. This idealized control law achieves perfect tracking. The method is applied to the control of a two-link manipulator handling variable loads in a flexible manufacturing system environment with noise. The result through simulation is that the tracking problem of articular robot with high precision can be realized by using the variable structure system (VSS) theory. The motions of articular robot were insensitive to various payloads. payloads.

  • PDF

해저작업 로봇 매니퓰레이터의 슬라이딩 모드 제어 (A Sliding Mode Control of Robot Manipulator Operated Under the Sea)

  • Park, H.S.;Park, H.I.
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.106-113
    • /
    • 1996
  • This paper presents a modeling of undersea robot manipulators and a control scheme appropriate for manipulating the manipulators working under the unstrcuctured sea water environment. Under the sea, the added mass and added moment of inertia, buoyancy, and drag forces should be considered in modeling the dynamics of the robot manipulators. Due to the complexity of them, the desired dynamics of manipulators can not be accomplished by the conventional control schemes. Hence, a sliding mode control is applied to control the modeling error.

  • PDF

볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어 (Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw)

  • 최형식;김영식;전대원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

유연한 공압인공근육로봇의 강건제어 (Robust control of a flexible manipulator with artificial pneumatic muscle actuators)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

Sliding Mode Controller with Sliding Perturbation Observer Based on Gain Optimization using Genetic Algorithm

  • You, Ki-Sung;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.630-639
    • /
    • 2004
  • The Stewart platform manipulator is a closed-kinematics chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. However, this is a complex and nonlinear system, so the control performance of the system is not so good. In this paper, a new robust motion control algorithm is proposed. The algorithm uses partial state feedback for a class of nonlinear systems with modeling uncertainties and external disturbances. The major contribution is the design of a robust observer for the state and the perturbation of the Stewart platform, which is combined with a variable structure controller (VSC). The combination of controller and observer provides the robust routine called sliding mode control with sliding perturbation observe. (SMCSPO). The optimal gains of SMCSPO, which is determined by nominal eigenvalues, are easily obtained by genetic algorithm. The proposed fitness function that evaluates the gain optimization is to put sliding function. The control performance of the proposed algorithm is evaluated by the simulation and experiment to apply to the Stewart platform. The results showed high accuracy and good performance.