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Abstract

This paper presents the development of a full order 

sliding mode controller for tracking problem of a class

of uncertain dynamical system, in particular, the direct

drive robot manipulators. By treating the arm as an 

uncertain system represented by its nominal and

bounded parametric uncertainties, a new robust full-

order sliding mode tracking controller is derived such 

that the actual trajectory tracks the desired trajectory as

closely as possible despite the non-linearities and input 

couplings present in the system.  A proportional-integral

sliding surface is chosen to ensure the stability of 

overall dynamics during the entire period i.e. the

reaching phase and the sliding phase.  Application to a 

three DOF direct drive robot manipulator is considered.

1 Introduction 

The concept of robot directly driven by electrical motors

eliminate the problems associated with gear backlash as

well as reducing the friction significantly. The

construction is much stiffer than the conventional robot

manipulator with gearing, wear and tear is not a

problem, and the arm is more reliable and easy to

maintain due to its simplicity. In direct-drive arm, the 

complex dynamics of the arm are directly reflected to 

the motor axes.  Therefore, the varying inertia effect and 

the effects of the coupling and non-linear torques will

have a substantial dynamical effect.  Moreover, large

inductance in typically used direct-drive actuators, such

as Brush-less DC Motors (BLDCM) and Variable 

Reluctance Motors (VRM), will have a direct influence

on the overall dynamics of the direct drive arm.

Variable structure control with Sliding Mode Control

(SMC) is a powerful technique that has been 

successfully applied for the control of the numerous

nonlinear systems [1], [2], [3].  The design philosophy

behind the SMC is to design a switching surface and 

followed by the design of a high-speed switching

control law to drive the nonlinear plant’s state trajectory 

onto the surface such that the system dynamics is 

strictly determined by the dynamics of the sliding

surfaces and hence insensitive to parameter variations

and system disturbances.

In this paper, a robust tracking controller capable of

withstanding the expected variations and uncertainties

in the direct-drive robot system is presented.  A 

complete model of the direct-drive robot manipulator is

used in designing the controller. It is assumed that the

upper bounds on the non-linearities and uncertainties 

present in the system are available.  On the basis of the

SMC theory, a Full-Order Sliding Mode Control

(FOSMC) controller for robust tracking of direct-drive

robot manipulators is proposed.  The performance of the

proposed control law is evaluated by means of computer

simulation studies using a three DOF revolute direct-

drive robot manipulator actuated by the BLDCMs.

2 Problem Formulation

The integrated dynamic model of an N DOF direct-drive 

revolute manipulator can be represented in state-space 

form as [4]:
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 is a vector of the parameters of the mechanism, such 

as payload, which belong to the finite region of

allowable parameter values , that is .

are the joint angle, velocity and

acceleration, respectively.

and,

The dynamics (1) can be transformed into an uncertain

dynamical system as follows: 

)((*)][)((*)][)( tUBBtXAAtX        (3) 

where * represents the term (X, ,t) for simplicity, while

A and B are nominal constant matrices.  The elements of 

the A(*) and B(*) matrices, denoted by  and 

, may be considered as uncertainties that belong

to uncertainty bounding sets � and �.  The uncertainty

bounding sets may be defined as follows
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where the values of the constants   and  are 

assumed known. 
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Let a continuous function  be the desired

state trajectory, where X

N

d tX 3)(

d(t) is defined as:
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and define the tracking error, Z(t) as 

)()()( tXtXtZ d
             (7) 

In this study, the following assumptions are made:

1. There exist continuous functions  and 

 such that for all  and all t:

NH 33(*)

N3NE 33(*) X

(*);(*)(*) HBHA              (8) 

(*);(*)(*) EBEB                        (9) 

2. There exist a Lebesgue function 1, which 

is integrable on bounded interval such that
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Assumption 1) assures that all uncertain portions A(*)

and B(*) are contained in the range space of the

nominal input matrix B.  This structural condition on the

uncertainty is termed matching condition [5].  The

continuous functions  and  exist if and only

if the following rank conditions are satisfied:

(*)H (*)E
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The rank conditions (11) and (12) are essentially related

to the structure of the matrices B, A(*) and B(*), and 

not to the values of their elements.  These conditions 

impose constraints on the structure of the system matrix

uncertainty A(*), and the input matrix uncertainty

B(*) to lie within the range space of the input matrix

B. This assumption is needed so that the control, U(t),
which enters the system through B may compensate the

uncertainty in the system.  On the other hand,

assumption 2) is needed to ensure asymptotic tracking 

of controlled plant.

In view of (6) - (9), equation (3) can be written as

)()]([)()()()()]([)( tUtBEBtBtXtBHtZtBHAtZ d

                          (13) 

Define the sliding surface  as 1)( mts
t

dZCBKCAtCZt
0

)(][)()(s             (14)

where  and  are constant

matrices.  The structure of matrix C is as follows:

NmRC 3 NmRK 3

][ 21 njcccdiagC             (15)

The matrix C is chosen such that CB  is non-

singular and the matrix K satisfies 

mmR

0)(max BKA             (16)

The condition (16) guarantees that all the desired poles

are located in the left half of the s-plane to ensure

stability.  The gain matrix K may be computed using the

conventional pole placement technique with the pre-

specified poles location. 

The control problem then is to design a controller using

the sliding surface (14) such that the system state

trajectory X(t) tracks the desired state trajectory Xd(t) as 

closely as possible for all t in spite of the uncertainties

and non-linearities present in the system.  In view of the 

error space, the tracking problem has become the

problem of stabilizing the error system (13).

3 Tracking Controller Design 

Differentiating (13) gives

)(][)()(s tZCBKCAtZCt           (17) 

Substituting (12) into (16) and equating it to zero gives

the equivalent control, Ueq(t), a mathematically derived 

tool for the analysis of a sliding motion. It can be

shown that the equivalent control, Ueq(t), is given by

)}()()()())({()]([)( 1 tXtHttZKtHtEItU dneq

                        (18) 

The system dynamics during sliding mode can be found 

by substituting the equivalent control (18) into the

system error dynamics (13):

)(][)( tZBKAtZ          (19) 

Hence if the matching condition is satisfied (conditions

(11) and (12) hold), the system error dynamics during

sliding mode are independent of the system

uncertainties and couplings between the inputs, and,

insensitive to the parameter variations, and may be

shaped up through a proper selection of the desired

closed loop poles locations.

The manifold (13) is asymptotically stable in the large,

if the following hitting condition is held [6]: 

0))(s/))()(s(( ttstT            (20) 

As a proof, let the positive definite function be

)(s)( ttV            (21) 

Differentiating (21) with respect to time, t yields

)(s/))()(s()( T ttsttV                          (22) 

Following the Lyapunov stability theory, if (20) holds, 

then s(t) is asymptotically stable in the large.

Theorem 4.1: The hitting condition (20) of the 

manifold (14) is satisfied if the control U(t) of system

(3) is given by :
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where

)1/()(1 CBKCB                          (24) 

)1/()(2 CB                          (25) 

)1/()(3 CB                                        (26) 

Proof: See [7]. 

The conditions imposed by (24), (25) and (26) not only

guarantee that the hitting condition (20) is met, but it 
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also assure that based on the Lyapunov theory, the

system dynamics is stable in the large.

The sign function SGN in (23) is an m 1 vector of 

discontinuous functions and may gives rise to the input

chattering and direct application of such control to the

plant may be impractical.  To eliminate the control input

chattering, each element of the discontinuous function

vector may be replaced by a proper 

continuous function [8] - [10] as follows:
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where i is a positive constant.

4 Simulation Results

Consider a three DOF revolute direct-drive robot

manipulator actuated by BLDCM motors shown in Fig.

1.  An integrated model comprising the mechanical part 

of the robot and the actuator dynamics have been

derived and used in the simulations. The model is

highly non-linear and coupled, taking into account the 

contributions of the actuator dynamics, as well as the

inertias, the Coriolis forces, the centrifugal forces and

the gravitational forces present in the mechanical part of 

the robot arm [4].  These equations were used in the

simulation to represent a real direct-drive robot

manipulator without any approximation and

simplification of the highly non-linear and coupled

system.  For the purposes of deriving the FOSMC

tracking controller, the nominal matrices A and B, as 

well as the bounds on the non-zero elements of the

matrices A(*) and B(*) in (3) have been calculated 

based on the given range of the payload, joint angles

and velocities.  The nominal matrices are as in equation

(29), while the bounds on the non-zero elements are 

listed in the Appendix.

The controller is required to track a reference trajectory: 

t
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where .  The input trajectory is

set to start from [  to [ radians in 

2 seconds.

3,2,1),0()( iiii

T]5.05.18.0
T]2.12.00.1

Using (8) and (9), the bounds of H(*) and E(*) may be 

computed as follows: 

6200.0(*);9874.5(*) EH                 (31) 

Define the gain K as follows:

06.008.007.006.024.0002.042.00

11.006.0021.021.099.209.065.10

01.067.0007.027.107.026.059.001.0

K

          (32) 

such that the closed loop poles are:

Joint 1: )0.3,31.0,3.0{1

Joint 2:           (33) )0.3,31.0,3.0{2

Joint 3: )3.0,031.0,03.0{3

Let the matrix C be:

12030000000

00012030000

000000132

C   (34) 

Using (24), (25) and (26), the controller parameter

may be computed as follows: 

7962.761
 ;  ;    (35)2157.662 8566.63

The simulation was then carried out using the controller

as defined by (23) with the direct drive robot load fixed

at its extremity i.e. no load (0 kg) and maximum load

(10 kg) with the controller parameters set as follows:

30;300;350 321
.         (36) 

Fig. 2 shows the tracking responses of each joint of the 

robot.  The tracking performances are good for all joints

indicating that the controller is capable of withstanding

the    non-linearities    and   uncertainties present in the 

system. The control input generated switches

indiscriminately very fast to ensure all states are

directed toward the sliding surfaces as shown in Fig. 3. 

To eliminate the input chattering, the simulation was

30.708.1844.1199.064.3264.13214.018.00

100000000

010000000

62.027.260.257.852.651.11282.456.490

000100000

000010000

99.078.1303.023.305.2819.1578.808.210

000000100

000000010

A

98.17567.4423.0

000

000

11.3958.3770.5

000

000

16.056.491.20

000

000

B

;   (29)

carried again but using the proper continuous functions

as defined by (28) with the constants i's are as in Table 

1.
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Table 1.  Continuous Function Constants

i

Joint 1 2 3

Set 1 200 100 60
Set 2 1000 550 250
Set 3 2000 800 600

The simulation results for the control inputs and the

tracking errors for each joint are shown in Fig. 4 and

Fig. 5, respectively.   It can be seen from the graphs that

the chattering in the control input may be suppressed 

with a suitable choice of constant i.  The value of i

should be properly selected since too large values will

only make the control input chattering reappear but with

a lower frequency.  Besides, larger tracking errors may

also be noticed at every joints of the robot as can be 

seen in Fig. 5.

5 Conclusions 
In this paper, a full-order Sliding Mode tracking

controller is proposed for a three DOF direct drive robot

manipulator.  It is shown mathematically that the error

dynamics during sliding mode is stable and can easily

be shaped-up using the conventional pole-placement

technique.  Beside during the sliding phase, the system

stability is also guaranteed during the reaching phase.

Results from the simulation shows that the proposed 

controller is effective and feasible since the tracking 

error is guaranteed to decrease asymptotically to zero if 

certain conditions pertaining to the controller parameter

are satisfied.

a

b
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APPENDIX

The bounds on the non-zero elements of the matrices A(*) and B(*):

;

; ;
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Fig. 1:  A Three DOF Revolute Direct Drive Robot

             Manipulator 
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