• Title/Summary/Keyword: robot assist

Search Result 104, Processing Time 0.026 seconds

Development of Wearable Robot for Elbow Motion Assistance of Elderly (노약자의 팔꿈치 거동 지원을 위한 착용형 로봇 개발)

  • Jang, Hye-Yoen;Han, Chang-Soo;Kim, Tae-Sik;Jang, Jae-Ho;Han, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • The purpose of this study is to develop the algorithm which can control muscle power assist robot especially for elderly. Recently, wearable robots for power assistance are developed by many researchers, and its application fields are also variable such as for medical or military equipment. However, there are many technical barriers to develop the wearable robot. This study suggest a control method improving performance of a wearable robot system by using a EMG signal of major muscles and a force sensor signal as command signal of system. The result of the robot Prototype efficiency experiment, the case of Maximum Isometric motion it suggest 100% power of muscle, the man need only 66% of MVIC(Maximum Voluntary Isometric Contraction) to lift 5kg dumbbell without robot assist. However the man needs only 52% of MVIC to lift 5kg dumbbell with robot assist. Therefore 20% muscle power increased with robot assist. Also, we designed light weight robot mechanism that extract the command signal verified and drive the wanted motions.

Development of the Power Assist System for High Efficiency and Lightweight Wearable Robot in Unstructured Battlefield (비정형화된 전장 환경에 활용 가능한 고효율-경량형 외골격 착용 로봇의 근력 보조 시스템 개발)

  • Huichang Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.313-323
    • /
    • 2023
  • The wearable robot system is designed to assist human skeletal and muscular systems for enhancing user's abilities in various fields, including medical, industrial, and military. The military has an expanding need for wearable robots with the integration of surveillance/control systems and advanced equipment in unstructured battlefield environments. However, there is a lack of research on the design and mechanism of wearable robots, especially for power assist systems. This study proposes a lightweight wearable robot system that provides comfortable wear and muscle support effects in various movements for soldiers performing high-strength and endurance missions. The Power assist mechanism is described and verified, and the tasks that require power assist are analyzed. This study explain the system including its driving mechanism, control system, and mechanical design. Finally, the performance of the robot is verified through experiments and evaluations, demonstrating its effectiveness in muscle support.

Design of Calf Link Force Sensor of Walking Assist Robot of Leg Patients (편마비 다리환자를 위한 보행보조로봇의 발목 2축 힘센서 설계)

  • Choi, Chi-Hun;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • This paper describes the design and manufacture of a ankle two-axis force sensor of a walking assist robot for hemiplegic leg patient. The walking assist robot for the hemiplegic leg patient can safely control the robot by detecting whether the foot wearing the walking assist robot is in contact with the obstacle or not. To do so, a two-axis force sensor should be attached to the robot's ankle. The sensor is used to measure the force of a patient's ankle lower part. The two-axis force sensor is composed of a Fx force sensor, a Fy force sensor and a pulley, and they detect the x and y direction forces, respectively. The two-axis force sensor was designed using by FEM(Finite Element Method), and manufactured using by strain-gages. The characteristics experiment of the two-axis force sensor was carried out respectively. The test results indicated that the interference error of the two-axis force sensor was less than 1.2%, the repeatability error and the non-linearity of the two-axis force sensor was less than 0.04% respectively. Therefore, the fabricated two-axis force sensor can be used to measure the force of ankle lower part in the walking assist robot.

Passivity Based Adaptive Control and Its Optimization for Upper Limb Assist Exoskeleton Robot (상지 근력 보조용 착용형 외골격 로봇의 수동성 기반 적응 제어와 최적화 기법)

  • Khan, Abdul Manan;Ji, Young Hoon;Ali, Mian Ashfaq;Han, Jung Soo;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.857-863
    • /
    • 2015
  • The need for human body posture robots has led researchers to develop dexterous design of exoskeleton robots. Quantitative techniques to assess human motor function and generate commands for robots were required to be developed. In this paper, we present a passivity based adaptive control algorithm for upper limb assist exoskeleton. The proposed algorithm can adapt to different subject parameters and provide efficient response against the biomechanical variations caused by subject variations. Furthermore, we have employed the Particle Swarm Optimization technique to tune the controller gains. Efficacy of the proposed algorithm method is experimentally demonstrated using a seven degree of freedom upper limb assist exoskeleton robot. The proposed algorithm was found to estimate the desired motion and assist accordingly. This algorithm in conjunction with an upper limb assist exoskeleton robot may be very useful for elderly people to perform daily tasks.

Development of Calf Link Force Sensors of Walking Assist Robot for Leg Patients (다리 환자를 위한 보행보조로봇의 종아리 링크 3축 힘센서 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • This paper describes the design and fabrication of a three-axis force sensor with parallel plate beams (PPSs) for measuring the calf force while a patient with a walking assist robot is walking. Current walking assist robots can't measure the weight of the patient's leg and the robot's leg which required for robot control. So, the three-axis force sensor in the calf link is designed and manufactured, it is composed of a Fx force sensor, a Fy force sensor and a Fz force sensor. The three-axis force sensor was designed using by FEM(Finite Element Method), and fabricated using strain-gages. The characteristics experiment of the three-axis force sensor was carried out respectively. The test results indicated that the repeatability error and the non-linearity error of three-axis force sensor was less than 0.04% respectively. Therefore, the fabricated three-axis force sensor in the calf link can be used to measure the patient's calf force in the walking assist robot.

Development of Torque Sensor for Measurement of Knee Joint Torque of Walking Assist Robot in Stroke Patients (뇌졸중환자 보행보조로봇의 무릎관절 토크측정을 위한 토크센서 개발)

  • Park, Jeong-Hyeon;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • In this paper, a torque sensor is designed and fabricated to measure the knee joint torque of a walking assist robot for stroke patients. The torque sensor sensing part was modeled on the link of the part connected to the knee joint motor. The torque capacity of the knee joint was calculated by simulation and the size of the torque sensor sensing part was designed using the finite element method. The torque sensor was fabricated by attaching a strain gauge to the sensing part. Characteristic experiments were conducted to characterize the torque sensor, and the torque sensor was calibrated to utilize it for the control of the walking assist robot. As a result of the characteristics test, the reproducibility error and the nonlinearity error of the torque sensor were 0.03% and 0.04%, respectively. Therefore, it is considered that the developed torque sensor can be used to measure the torque applied to the knee joint when walking on a walking assist robot.

Organization of Sensor System and User's Intent Detection Algorithm for Rehabilitation Robot (보행보조 재활로봇의 센서 시스템 구성 및 사용자 의도 감지 알고리즘)

  • Jung, Jun-Young;Park, Hyun-Sub;Lee, Duk-Yeon;Jang, In-Hun;Lee, Dong-Wook;Lee, Ho-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.933-938
    • /
    • 2010
  • In this paper, we propose the organization of a sensor system and user's intent detection algorithm for walking assist rehabilitation robots. The main purpose of walking assist rehabilitation robots is assisting SCI patients to walk in normal environment. To use walking assist rehabilitation robot in normal environment, it is needed to consider various factors about user's safety and detection of user's intent and so on. For these purposes, we have analyzed the use case of rehabilitation robots and organized the system of sensors for walking assist rehabilitation robots and finally, we have developed the algorithm which is used to detect user's intent for those. We applied our proposal method in the rehabilitation robot, ROBIN, and verified their effectiveness by normal, not patient.

Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals (보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지)

  • Jang, Eun-Hye;Chun, Byung-Tae;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.294-301
    • /
    • 2010
  • In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.