Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals

보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지

  • 장은혜 (한국전자통신연구원 융합기술연구부문 로봇/인지지스템 연구부 인지기술연구팀) ;
  • 전병태 (한경대학교 웹정보공학과) ;
  • 지수영 (한국전자통신연구원 융합기술연구부문 로봇/인지지스템 연구부 인지기술연구팀) ;
  • 이재연 (한국전자통신연구원 융합기술연구부문 로봇/인지지스템 연구부 인지기술연구팀) ;
  • 조영조 (한국전자통신연구원 융합기술연구부문 로봇/인지지스템 연구부 인지기술연구팀)
  • Received : 2010.07.07
  • Accepted : 2010.09.17
  • Published : 2010.11.30

Abstract

In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

Keywords

References

  1. J. Perry, "Kinesiology of lower extremity bracing", Clinical Orthopaedics and Related Research, Vol.102, pp.18-31, 1974. https://doi.org/10.1097/00003086-197407000-00004
  2. 김헌희, 정진우, 장효영, 김진오, 변증남, "작업지향 설계를 위한 의복형 보행보조 로봇의 분류방법", 로봇공학회지 논문지, 제1권, 제1호, pp.1-8, 2006.
  3. 김경, 강승록, 박용군, 정구영, 권대규, "족관절 보조기를 착용한 고령자의 족관절 족저굴곡 토크 보조특성 분석", 로봇공학회 논문지, 제5권, 제1호 pp.48-54, 2010.
  4. D. Winter, Biomechanics and Motor Control of Human Movement, Wiley-Interscience Publication, 1990.
  5. H. Kazerooni, Ryan Steger, and Lihua Huang, "Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX)", The International Journal of Robotics Research, Vol.25, pp.561-573, 2006. https://doi.org/10.1177/0278364906065505
  6. MIT media lab, URL: http://www.media.mit.edu/
  7. S. Jezernik, G. Colombo, T. Kelly, H. Frueh, and M. Morari, "Robotic orthosis Lokomat: a rehabilitation and research tool", Neuromodulation, Vol.6, no.2, pp.108-115, 2003. https://doi.org/10.1046/j.1525-1403.2003.03017.x
  8. Honda Ltd., URL: www.robotlegs.org.
  9. Argo Medical Technologies Ltd., URL: http://www.argomedtec. com.
  10. H. Kawamoto, and Y. Sankai, "Power assist method based on phase sequence and muscle force condition for HAL", Advanced Robotics, Vol.19, No.7, pp.717-734, 2005. https://doi.org/10.1163/1568553054455103
  11. J.W. Min, K. Lee, S.C. Lim, and D.S. Kwon, "Human-friendly interfaces of wheelchair robotics system for handicapped persons", Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol.2, pp.1505-1510, 2002.
  12. 강성재, 류제청, 김규석, 김영호, 문무성, "하반신 마비환자를 위한 동력보행보조기의 퍼지제어 기법 개발", 제어.로봇.시스템학회 논문지, 제15권, 제2호, pp.163-168, 2009.
  13. 전도영, 이용권, 최문택, 김문상 "프론티어 지능로봇사업단의 노인을 위한 Healthcare Robot 개발 소개", 대한전기학회지: 전기의 세계, 제58권, 제7호, pp. 45-53, 2009.
  14. A. Williamson, F. Bloemhof, and H. Boom, H. (1990). "Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation", IEEE Transactions on Biomedical Engineering, Vol.37, No.12, pp.1201-1208, 1990. https://doi.org/10.1109/10.64463
  15. A. Kostov, B.J. Andrew, D.B. Popovic, R.B. Stein, and W. Armstron, "Machine learning in control of functional electrical stimulation systems for locomotion", IEEE Transactions on Biomedical Engineering, Vol.42, No.6, pp.541-551, 1995. https://doi.org/10.1109/10.387193
  16. S.K. Ng, and H.J. Chizeck, "Fuzzy model identification for classification of gait events in paraplegics", IEEE Transactions on Fuzzy Systems, Vol.5, No.4, pp.536-544, 1997. https://doi.org/10.1109/91.649904
  17. R. Dai, R.B. Stei, B.J. Andrews, K.B. James, and M. Wieler, "Application of tilt sensors in functional electrical stimulation", IEEE Transactions on Rehabilitation Engineering, Vol.4, No.2, pp.63-72, 1996. https://doi.org/10.1109/86.506403
  18. J. Rose, and J.G. Gamble, Human walking. Williams & Wilkins 2nd Ed.(Philidelphia), 1994.
  19. Y. Handa, T. Handa, M. Ichie, H. Murakami, N. Hoshimiya, S. Ishikawa, and K. Ohkubo, "Functional electrical stimulation (FES) systems for restoration of motor function of paralyzed muscle-versatile systems and a portable system", Frontiers of Medical and Biological Engineering, Vol.4, No.4, pp.241-255, 1992.
  20. 박병림, 김민선, 김상수, 정동명, 홍승홍, "일측 마비환자의 전기자극에 의한 보행기능의 회복", 전자공학회지, 제29권, 제6호, pp.465-471, 1992.
  21. B. Baker, "Walk of life", The Engineer, Vol.293, No.7750, pp.30-31, 6, 2008.
  22. B. Miripour, Climbing and Walking Robot, K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, and Y. Sankai, "Intention-based walking support for paraplegia patients with robot suit HAL", pp.383-408, 2010.