• 제목/요약/키워드: robot System

검색결과 4,892건 처리시간 0.035초

로봇을 이용한 교량검사 시스템 개발에 관한 연구 (Bridge Inspection System using Robot)

  • 이안용;오제근;최영진
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.77-84
    • /
    • 2010
  • This paper proposes a bridge inspection system using a robot to manage the safety status of bridges. A conventional bridge inspection has a lot of problems because inspection is conducted manually by human. As an alternative, we are to develop a robot system having machine vision and this robot system is mounted on an end linkage of specially designed car having seven DOF (Degrees Of Freedom) to inspect cracks beneath bridge. This system is able to check a status of the bridge and record its changes every other year. As a result, the developed robot system offers us the inspection result of quality and reliability about the bridge inspection status. Also, we have tested the effectiveness of the suggested system through outdoor experiments.

선저 청소용 수중로봇의 청소 모듈 및 제어 시스템 개발 (Development of Cleaning Module and Operating System of Underwater Robot for Ship Hull Cleaning)

  • 최형식;권경엽;정구락;서주노;강형석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents development of ROV-type underwater robot capable of cleaning ship hull in automatic mode. The purpose of developing this robot is for underwater cleaning to secure the safety of divers who inspect and clean the ship hull. The robot consists of the cleaning system with rotating brush mechanism, a car-like driving mechanism, inspection system using video, and overall control system for underwater communication and operation. In this paper, we present overall design process of the cleaning system and operating system and technical contents of the overall control system for the underwater cleaning robot.

실시간 운영 체제를 이용한 범용 로봇 제어 언어의 개발 (The development of general purpose robot language based on real time operating system)

  • 이덕만;오종환;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.18-23
    • /
    • 1991
  • We need general developing environment to control robot with effect but less energy. So, software and hardware tools are very important. In this paper, we present a general-purpose robot control language and its implementation on Real Time O/S and VME bus system. The system runs on the VMEexec Real Time Operating System and robot program is written in the "C" language. The developed program is linked with the robot control C library io produce an executable image. Under the developed robot control environment, the user can write a general high-level control program leaving all the specific information about the robot in a robot specific file.ific file.

  • PDF

산업용 로보트의 효율적인 작동 데이터 산출방법에 관한 연구 (A study on the efficient calculation method of the motion data in the industrial robot)

  • 이순요;권규식;노근래
    • 대한인간공학회지
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 1990
  • The robot motion control in the industrial robot is generally executed by the teach pendant. But, it requires much teaching time and workload to the operators. This study suggests the use of the robot motion control method by the computed keyboard in the industrial robot instead of the teach pendant. TES/CCS(Teaching Expert System/Cartesian Coordinate System) and TES/WCS(Teaching Expert System/World Coordinate System) that have been proposed to improve the robot motion control are applied for this concept. This study is intended to improve the robot motion control in TES/CCS. Parameter limitation problems in getting the motion data on position and posture of the robot in macro motion control are solved by proposed geometric algorithm. This result demonstrates reduction of the average teaching task time to the teaching position.

  • PDF

초음파센서를 이용한 로봇의 소형장애물 감지 및 회피방법연구 (Perception of small-obstacles using ultrasonic sensors and its avoidance method in robot)

  • 김갑순
    • 센서학회지
    • /
    • 제14권2호
    • /
    • pp.101-108
    • /
    • 2005
  • The research on the avoidance of the large-obstacles such as a wall, a large box, etc. using ultrasonic sensors has been generally progressed up to now. But the mobile robot could meet a small-obstacle such as a small plastic bottle, a small sphere, and so on in its designated path, and could be disturbed by them in the locomotion of the mobile robot. So, it is necessary to research on the avoidance of a small-obstacle. In this paper, a robot's small-obstacle perceiving system was designed and fabricated by arranging four ultrasonic sensors on the plastic plate to avoid small-obstacles. The system was installed on the upper part of the mobile robot with the slope angles between $40.7^{\circ}$ and $23.3^{\circ}$ to a horizontal line and the dynamic characteristic test of the robot was performed. As the result, it was confirmed that the mobile robot with the system could avoid small-obstacles in indoor environment safely.

이동물체 추적 가능한 이동형 로봇구동 시스템 설계 및 센서 구현 (Robot Driving System and Sensors Implementation for a Mobile Robot Capable of Tracking a Moving Target)

  • 명호준;김동환
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.607-614
    • /
    • 2013
  • This paper proposes a robot driving system and sensor implementation for use with an education robot. This robot has multiple functions and was designed so that children could use it with interest and ease. The robot recognizes the location of a user and follows that user at a specific distance when the robot and user communicate with each other. In this work, the robot was designed and manufactured to evaluate its performance. In addition, an embedded board was installed with the purpose of communicating with a smart phone, and a camera mounted on the robot allowed it to monitor the environment. To allow the robot to follow a moving user, a set of sensors combined with an RF module and ultrasonic sensors were adopted to measure the distance between the user and the robot. With the help of this ultrasonic sensors arrangement, the location of the user couldbe identified in all directions, which allowed the robot to follow the moving user at the desired distance. Experiments were carried out to see how well the user's location could be recognized and to investigate how accurately the robot trackedthe user, which eventually yielded a satisfactory performance.

전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현 (Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot)

  • 서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.91-97
    • /
    • 2010
  • 본 논문은 전방향 이동로봇과 로봇에 탑재된 카메라를 이용한 네트워크기반 원격 감시시스템의 구현에 대하여 기술한다. 제안된 감시시스템은 기존의 건물 곳곳에 설치된 감시 카메라의 영상이 고정된 및 시야에서 침입탐지를 수행하는데 비해 이동로봇을 이용해 원격으로 로봇을 자유롭게 조종해 감시하는 것이 특징이다. 감시시스템 구현에 사용된 이동로봇은 전방향 제어가 가능한 세 개의 바퀴를 가지고 있으며, 이를 네트워크 환경에서 원격으로 제어하고 영상을 획득하기 위해 마이크로소프트사의 MSRDS를 이용해 로봇 기능들을 네트워크 노드에서 실행되는 서비스들로 구현하였다. 실험을 통해 개발된 전방향 이동로봇 원격 감시시스템은 유무선 네트워크 환경에서 자유롭게 이동로봇을 조종하며 원격 모니터링이 가능함을 보여주었다. 또한 개발된 감시시스템은 획득된 원격 영상을 네트워크에 연결된 다른 PC에서 실시간으로 전송받아 색상기만 물체탐지 및 움직임 검출을 수행하였다.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

가상 로봇 교육 시스템 설계 및 구현 (Design and Implementation of a Virtual Robot Education System)

  • 웅홍우;소원호
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.108-115
    • /
    • 2011
  • 본 논문에서는 레고 마인드스톰 NXT 로봇을 이용한 프로그래밍 교육을 위한 가상 로봇 교육 시스템 (VRES; Virtual Robot Education System)을 설계하고 구현한다. 제안된 시스템을 통하여 프로그램 학습자는 소스 코드를 편집, 컴파일, 그리고 로봇에 다운로드하여 자신의 실행 코드를 동작시킨다. 로봇을 관찰하기 위하여 시스템은 웹 카메라를 포함하고 있어 모니터링 서비스를 제공한다. 따라서 학생들은 자신의 프로그램을 다운로드한 로봇의 동작을 자세하게 검증할 수 있으며 필요시 디버깅 할 수 있다. 추가로 간단한 사용자 친화적 프로그래밍 언어와 이에 대한 컴파일러를 설계한다. 이러한 도구를 이용하여 학습자는 자바 언어보다 쉽게 NXT 로봇 프로그램을 생성하여 테스트할 수 있다. 교수자는 시스템에서 제공하는 직접 제어 모드를 이용하여 수업 주제를 위한 로봇의 제어와 관리가 가능하다. 그럼으로. 제안된 시스템은 학생들이 정규 수업 또는 방과 후에 인터넷과 웹브라우저를 사용하여 로봇 프로그래밍을 학습할 수 있도록 지원할 수 있다.

상지 근력지원용 웨어러블 로봇을 위한 명령신호 생성 기법 개발 (Development of Command Signal Generating Method for Assistive Wearable Robot of the Human Upper Extremity)

  • 이희돈;유승남;이승훈;장재호;한정수;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.176-183
    • /
    • 2009
  • This paper proposes command signal generating method for a wearable robot using the force as the input signal. The basic concept of this system pursues the combination of the natural and sophisticated intelligence of human with the powerful motion capability of the robot. We define a task for the command signal generation to operate with the human body simultaneously, paying attention to comfort and ease of wear. In this study, we suggest a basic exoskeleton experimental system to evaluate a HRI(Human Robot Interface), selecting interfaces of arm braces on both wrists and a weight harness on the torso to connect the robot and human. We develop the HRI to provide a command for the robot motion. It connects between the human and the robot with the multi-axis load-cell, and it measures the relative force between the human and the robot. The control system calculates the trajectory of end-effector using this force signal. In this paper, we verify the performance of proposed system through the motion of elbow E/F(Extension/Flexion), the shoulder E/F and the shoulder Ab/Ad (Abduction/Adduction).