• Title/Summary/Keyword: road pavement

Search Result 1,208, Processing Time 0.037 seconds

Basic Study of the Improvement of Maintenance Process for Efficient Highway Pavement Management (효율적인 고속도로 포장유지관리를 위한 유지관리프로세스 개선방안 기초연구)

  • Park, Jong-Beom;Lee, Yong-Jun;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6932-6942
    • /
    • 2014
  • The expressway is a key area of road networks for national industry, economics and social development. In addition, the number of lines are increasing continuously. Recently, road management policy have shown a paradigm shift to safe road, low-carbon and green etc. Nevertheless, the road condition has deteriorated dramatically by fatigue cracking, thermal cracking and weather impact. On the other hand, the budgets for highway maintenance have shrunk dramatically. In this study, an effective pavement management and maintenance process was developed to extend the pavement serviceability and pavement life to overcome the rack of budgets.

Estimation of the Mean CBR for the Subgrade Layer Including the Anti-Frost Layer (동상방지층을 포함한 노상층의 평균 CBR 산정에 관한 연구)

  • Min, Gyeong-Ho;Lee, Cheo-Keun;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • Generally, the California Bearing Ratio(CBR) for the material of subgrade is estimated without considering the anti-frost layer into the subgrade layer when pavements are designed. A pavement structure is determined according to the CBR. However, recently the design method taking the anti-frost layer into the subgrade layer is getting prevail. It makes the top of the subgrade layer strengthen and the thickness of the road pavement structure decreased. By the way, some confusion may be caused because theoretically the general equation for the mean CBR to combine the material of the subgrade layer and anti-frost layer have not been developed well. In this paper, laboratory and field CBR tests were performed to estimate of the mean CBR for the subgrade layer including the anti-frost layer. From the basis of the test results, modified equation which is calculating the mean CBR of the subgrade layer has been proposed. Finally, economical efficiency was considered by comparing the pavement thickness with the road pavement design using CBR of the subgrade layer alone and the road pavement design using the mean CBR including the anti-frost layer.

  • PDF

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

Improvement of a Decision Tree for The Rehabilitation of Asphalt Pavement in City Road (도심지 아스팔트 포장의 유지보수공법 의사결정 절차 개선)

  • Park, Chang Kyu;Kim, Won Jae;Kim, Tae Woo;Lee, Jin Wook;Baek, Jong Eun;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting. METHODS : To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS :In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used. CONCLUSIONS:A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.

Study on the Noise Characteristics of Bridge Deck Pavements in Seoul Inner Ring Road (서울시 내부순환도로 교면포장 형식에 따른 소음특성 연구)

  • Lee, Sang-Yum;Jin, Jung-Hoon;Mun, Sung-Ho;Moon, Hak-Ryong
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • A measuring technique for tire-pavement interaction noise that uses a proposed noble close proximity(NCPX) method, which has been proofed in terms of the reliability and consistency of interaction noise measurement through several researches, equipped with surface microphones has been adopted in order to perform bridge deck pavement noise evaluations on four different pavement surfaces. Through field testing measurement of bridge deck pavement in Seoul inner ring road, the appropriate noise-measuring procedures have been used for evaluating the noise characteristics of four different surfaces. Measuring results show that tire-pavement noise levels vary depending on the surface types and vehicle speeds. Furthermore, the different characteristics of tire-pavement interaction noise can be found before and after the new surface construction of bridge deck pavements in terms of the 1/3 octave band analysis of vehicle speed.

Performance and Economic Analysis for Rut-resistance Pavement Considering Life Cycle Cost (LCC를 고려한 내유동포장의 공용성 및 경제성 분석에 관한 연구)

  • Do, Myungsik;Han, Daeseok;Yoo, Inkyoon;Lee, Soohyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.783-796
    • /
    • 2006
  • Rut-resistance pavement is adopted to prevent pavement from plastic deformation since 1998. The objective of this paper is to investigate performance and economic efficiency between rut-resistance pavement and conventional hot-mix asphalt(HMA) on national highway. The pavement deterioration models incorporated in HDM-4 have been calibrated and adapted to local road conditions based on observed pavement rut-depth data. Based on calibration result of HDM-4, the economic evaluation including road agency cost and user cost is performed for 34 road pavement sections. Furthermore, we presented optimal timing for maintenance and performance levels subject to different budget. We found that rut-resistance pavement is performing better than conventional hot-mix asphalt in most road sections. Furthermore, we confirmed that the application of HDM-4 is useful for pavement project planning and evaluation. More investigation is needed to enlarge the scope of the pavement data and to explore more deeply socio-environmental cost and delay cost.

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

Study on temperature characteristics in depth of concrete pavement for development of prediction method of road surface freezing (노면결빙 예측기법 개발을 위한 콘크리트 포장의 깊이별 온도특성 연구)

  • Kim, Jong-Woo;Kim, Ho-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.391-392
    • /
    • 2010
  • The frozen road is effected as major cause of car accident in winter. Especially, road surface freezing on the highway can lead to fatal accident. The accident by frozen road can effectively reduced by prevent road surface freezing before it frozen as evaluate road surface condition. Therefore, this study installed thermometer in each depth of concrete pavement for evaluate road surface conditions which freezing chronically. The result of this study will be used as preliminary data for predict before freezing.

  • PDF

A study on voided-area analysis and remaining life prediction using the finite element method for pavement structures (유한요소기법을 이용한 동공해석과 공용수명 예측기법 연구)

  • Lee, Junkyu;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.131-136
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the integrity of pavement structures for areas where voids exist. Furthermore, we conducted the study of voided-area analysis and remaining life prediction for pavement structures using finite element method. METHODS : To determine the remaining life of the existing voided areas under asphalt concrete pavements, field and falling weight deflectometer (FWD) tests were conducted. Comparison methods were used to have better accuracy in the finite element method (FEM) analysis compared to the measured surface displacements due to the loaded trucks. In addition, the modeled FEM used in this study was compared with well-known software programs. RESULTS : The results show that a good agreement on the analyzed and measured displacements can be obtained through comparisons of the surface displacement due to loaded trucks. Furthermore, the modeled FEM program was compared with the available pavement-structure software programs, resulting in the same values of tensile strains in terms of the thickness of asphalt concrete layers. CONCLUSIONS : The study, which is related to voided-area analysis and remaining life prediction using FEM for pavement structures, was successfully conducted based on the comparison between our methods and the sinkhole grade used in Japan.

A Study on Development of the Concrete Pavement Condition Index (콘크리트 포장상태 평가지수의 개발에 관한 연구)

  • Kwon, Soo-Ahn;Kim, Nam-Ho;Seo, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.145-153
    • /
    • 2000
  • Pavement evaluation is a fundamental component for rational pavement management. Optimal rehabilitation method and the priority of rehabilitation should be based on the evaluation data. Some types of pavement condition index are needed for objective evaluation of Pavement condition and management of road network. In this study a expressway concrete pavement condition index model is developed through regression analysis that correlates panel rating with distress measurement from the test sections. The derived condition index can be used for network level PMS for the expressway concrete pavement. Correlation coefficient of the model was 0.68. The selected independent variables were International Roughness Index, crack and area of patching.

  • PDF