• Title/Summary/Keyword: river basin

Search Result 2,360, Processing Time 0.034 seconds

Evaluation of Possibility of Water Plant Wastes in Composting for Agricultural Recycling (수생식물 고사체의 농업적 재활용을 위한 퇴비화 가능성 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Seo, Young-Jin;Lee, Sang-Gyu;Kang, Seog-Jin;Lim, Byung-Jin;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.248-252
    • /
    • 2012
  • To evaluate the possibility of water plant wastes in composting for agricultural recycling, Phragmites communis (PHRCO), Typha orientalis (TYHOR) and Zizania latifolia (ZIZLA) were used as a compost materials. In composting basin, cumulative oxygen consumptions of the compost used by water plant wastes were rapidly increased at the early stage and slightly decreased in around 15 days. Cumulative oxygen consumptions under different water plant wastes were higher in the order of TYHOR > ZIZLA > PHRCO. Temperature changes during composting process were rapidly increased at the early stage and then slowly decreased to $30{\sim}40^{\circ}C$. The maximum temperatures were higher in the order of ZIZLA ($72.2^{\circ}C$ at 11 days after starting composting) > TYHOR ($70.2^{\circ}C$ at 10 days after starting composting) > PHRCO ($66.5^{\circ}C$ at 7 days after starting composting). Oxygen consumptions at maximum temperature were higher in the order of TYHOR ($12,485mg\;O_2\;kg^{-1}$) > ZIZLA ($12,400mg\;O_2\;kg^{-1}$) > PHRCO ($9,340mg\;O_2\;kg^{-1}$). Organic matter contents, moisture contents and OM/N rates in the compost ranged 39.5~44.8%, 29.6~35.6% and 27.9~32.9, respectively. Considering that water plant waste can supply some of the nutrient requirements of crops and is a valuable fertilizer.

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.

Ichthyofauna and Community Structure from 21 Lakes in the Yeungnam Area including Gyeongsangbukdo and Gyeongsangnam-do Provinces, Korea (영남지역 21개 호소의 어류상과 군집구조)

  • Kim, Sang-Ki;Kang, Yeong-Hoon;Hong, Gi-Bung;Yoo, Dong-Uk;Suk, Ho-Yeong;Chae, Byung-Soo;Kim, Han-Sun;Hwang, Ui-Wook
    • Korean Journal of Ichthyology
    • /
    • v.23 no.4
    • /
    • pp.288-299
    • /
    • 2011
  • Freshwater fish fauna and community structure were surveyed through 21 lakes in the Yeungnam area including Gyeongsangbukdo and Gyeongsangnamdo provinces, Korean Peninsula from April 2008 to October 2009. Among 21 lakes, 16 lakes belong to the Nakdong River and 5 are independent drainages. From the present study, 61 species (44 genera, 15 families) were collected including 32 cyprinid species (52.5%), 6 cobitid species (9.8%) and so on. The dominant and subdominant species in aspect of the number of individuals were Hypomesus nipponensis (26.6%) and Squalidus gracilis majimae (14.8%), respectively. On the other hand, in aspect of in biomass, dominant and subdominant species were Lepomis macrochirus (19.8%) and Cyprinus carpio (14.7%), respectively. Among 61 examined species, there were found 20 Korean endemic species and 2 Korean endangered species (Pseudobagrus brevicorpus and Pungitius kaibarae). P. brevicorpus was found in Yongyeonji and Yeongcheonho, and P. kaibarae in Yongyeonji. In addition, 5 exotic species were identified such as Cyprinus carpio nudus (leather carp), Carassius cuvieri, Hypophthalmichthys molitrix, Lepomis macrochirus and Micropterus salmoides. Interestingly, a bluegill L. machrochirus appeared dominant or subdominant species in 5 of 21 examined lakes. Five species introduced from the other rivers in Korean Peninsula were additionally described. In the present study, it was first reported that Micropercops swinhonis inhabits in the Nakdong river basin. The fish species diversity, evenness and dominant indices were examined, and a dendrogram based on similarity indices of inhabiting species among the 21 examined lakes was constructed and discussed.

A Correlation between the Fractionation of Heavy Metals in the Paddy Soil of the Mangyeong River Basin and their Uptake by Rice Plants Grown on it (만경강 유역 논 토양 중 중금속 형태분류와 수도체의 흡수량과의 관계)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Moon, Kwang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.372-382
    • /
    • 1996
  • In order to elucidate the relationship between the mobility of heavy metals in soil and their uptake by plants, the soil samples collected from the Mangyeong River area were analyzed for the contents and existing forms of the heavy metals and the correlation between the contents of heavy metals in the soil and those in various parts of rice plants therefrom. The soil samples were collectes from ten sites in the paddy fields in 1982 and 1990, respectively, and the analysis on heavy metals including Cd, Zn, Cu and Pb was performed. The results are as follows: Total contents of heavy metals in the samples of 1990 were higher than those of 1982. The extent of increase was that Cd, Zn, Cu and Pb were 3, 29, 59 and 8% in top soil and 8, 50, 91 and 8% in sub-soil, respectively. The order of increasing ratio was Cu > Zn > Pb > Cd and the variation of Cd content by sequentially different extraction was organically bound > dilute acid-extractable=Fe-Mn oxide bound > exchangeable > residual fractions and the content of Cd with organically bound was $46.62{\sim}48.08$ and $41.18{\sim}50.18%$ of total Cd in top and sub-soil, respectively. The ratios of immobile heavy metals, Cd, Pb, Cu and Zn, bound within an oxide or silicate matrix of Fe-Mn oxide in top-soil were 21.25, 35.98, 74.18 and 82.12%, respectively, and consequently their mobile ratios of exchangeable, dilute acid-extractable and organically bound were more than 17.88%. Those of mobile Cd, Pb, Cu and Zn were 78.25, 64.02, 25.82 and 17.88%, respectively. Except for Pb a correlation between the contents of Cd, Zn, and Cu of exchangeable and dilute acid-extractable in top-soil and those in leaf blade, stem and panicle axis was significant, but was not significant in sub-soil.

  • PDF

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Assessment of climate change impact on aquatic ecology health indices in Han river basin using SWAT and random forest (SWAT 및 random forest를 이용한 기후변화에 따른 한강유역의 수생태계 건강성 지수 영향 평가)

  • Woo, So Young;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.863-874
    • /
    • 2018
  • The purpose of this study is to evaluate the future climate change impact on stream aquatic ecology health of Han River watershed ($34,148km^2$) using SWAT (Soil and Water Assessment Tool) and random forest. The 8 years (2008~2015) spring (April to June) Aquatic ecology Health Indices (AHI) such as Trophic Diatom Index (TDI), Benthic Macroinvertebrate Index (BMI) and Fish Assessment Index (FAI) scored (0~100) and graded (A~E) by NIER (National Institute of Environmental Research) were used. The 8 years NIER indices with the water quality (T-N, $NH_4$, $NO_3$, T-P, $PO_4$) showed that the deviation of AHI score is large when the concentration of water quality is low, and AHI score had negative correlation when the concentration is high. By using random forest, one of the Machine Learning techniques for classification analysis, the classification results for the 3 indices grade showed that all of precision, recall, and f1-score were above 0.81. The future SWAT hydrology and water quality results under HadGEM3-RA RCP 4.5 and 8.5 scenarios of Korea Meteorological Administration (KMA) showed that the future nitrogen-related water quality in watershed average increased up to 43.2% by the baseflow increase effect and the phosphorus-related water quality decreased up to 18.9% by the surface runoff decrease effect. The future FAI and BMI showed a little better Index grade while the future TDI showed a little worse index grade. We can infer that the future TDI is more sensitive to nitrogen-related water quality and the future FAI and BMI are responded to phosphorus-related water quality.

Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff (강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안)

  • Kim, Dongkyun;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.795-805
    • /
    • 2021
  • In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.

The Structual Restoration on Gyeongju-Style Piled Stone-Type Wooden Chamber Tombs (경주식 적석목곽묘의 구조복원 재고)

  • Gweon, Yong Dae
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.66-87
    • /
    • 2009
  • The definition of the structure of wooden chamber tomb(piled stone-type) is as follows. It is a tomb with wooden chamber, and stones were piled on top of the wooden chamber, and then a wooden structure was placed on top of the piled stones, and more stones were piled on top of the wooden structure, and sealed with clay. Of course this definition can vary according to periods, the buried, etc. Gyeongju-style piled stone type wooden chamber tombs have some distinguished characteristics compared to general definition of piled stone type wooden chamber tombs. Outside the wooden chamber, either stone embankments or filled-in stones were layed out, and pilet-in stones are positioned right above the wooden chamber, and almost every class used this type, and finally, it is exclusively found in Gyeongju area. First generations of this Gyeongju-style piled stone type wooden chamber tombs appeared in first half of 5th century. These tombs inherited characteristics like ground plan, wooden chamber, double chamber(inner chamber and outer chamber), piled stones, burial of the living with the dead, piled stones, from precedent wooden chamber tombs. However these tombs have explicit new characteristics which are not found in the precedent wooden chamber tombs such as stone embankments, wooden pillars, piled stones(above ground level), soil tumuluses. stone embankments and wooden pillars are exclusively found on great piled stone type above-ground level wooden chamber tombs such as the Hwangnamdaechong(皇南大塚). Stone embankments, wooden pillars, piled stones(above ground level) are all elements of building process of soil tumuluses. stone embankments support outer wall of above-ground level wooden chambers and disperse the weight of tumuluses. Wooden pillars functioned as auxiliary supports with wooden structures to prevent the collapse of stone embankments. Piled stones are consists of stones of regular size, placed on the wooden structure. And after the piled stones were sealed with clay, tumulus was built with soil. Piled stones are unique characteristics which reflects the environment of Gyeongju area. Piled stone type wooden chamber tombs are located on the vast and plain river basin of Hyeongsan river(兄山江). Which makes vast source of sands and pebbles. Therefore, tumulus of these tombs contains large amount of sands and are prone to collapse if soil tumulus was built directly on the wooden structure. Consequently, to maintain external shape of the tumulus and to prevent collapse of inner structure, piled stones and clay-sealing was made. In this way, they can prevent total collapse of the tombs even if the tumulus was washed away. The soil tumulus is a characteristic which emerges when a nation or political entity reaches certain growing stage. It can be said that after birth of a nation, growing stage follows and social structure will change, and a newly emerged ruling class starts building new tombs, instead of precedent wooden chamber tombs. In this process, soil tumulus was built and the size and structure of the tombs differ according to the ruling class. Ground plan, stone embankments, number of the persons buried alive with the dead, quantity and quality of artifacts reflect social status of the ruling class. In conclusion, Gyeongju-style piled stone type wooden chamber tombs emerged with different characteristics from the precedent wooden chamber tombs when Shilla reached growing stage.

Application of deep learning method for decision making support of dam release operation (댐 방류 의사결정지원을 위한 딥러닝 기법의 적용성 평가)

  • Jung, Sungho;Le, Xuan Hien;Kim, Yeonsu;Choi, Hyungu;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1095-1105
    • /
    • 2021
  • The advancement of dam operation is further required due to the upcoming rainy season, typhoons, or torrential rains. Besides, physical models based on specific rules may sometimes have limitations in controlling the release discharge of dam due to inherent uncertainty and complex factors. This study aims to forecast the water level of the nearest station to the dam multi-timestep-ahead and evaluate the availability when it makes a decision for a release discharge of dam based on LSTM (Long Short-Term Memory) of deep learning. The LSTM model was trained and tested on eight data sets with a 1-hour temporal resolution, including primary data used in the dam operation and downstream water level station data about 13 years (2009~2021). The trained model forecasted the water level time series divided by the six lead times: 1, 3, 6, 9, 12, 18-hours, and compared and analyzed with the observed data. As a result, the prediction results of the 1-hour ahead exhibited the best performance for all cases with an average accuracy of MAE of 0.01m, RMSE of 0.015 m, and NSE of 0.99, respectively. In addition, as the lead time increases, the predictive performance of the model tends to decrease slightly. The model may similarly estimate and reliably predicts the temporal pattern of the observed water level. Thus, it is judged that the LSTM model could produce predictive data by extracting the characteristics of complex hydrological non-linear data and can be used to determine the amount of release discharge from the dam when simulating the operation of the dam.

Evaluation of Water Quality Characteristics of Saemangeum Lake Using Statistical Analysis (통계분석을 이용한 새만금호의 수질특성 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.297-306
    • /
    • 2023
  • Saemangeum Lake is the largest artificial lake in Korea. The continuous deterioration of lake water quality necessitates the introduction of novel water quality management strategies. Therefore, this study aims to identify the spatiotemporal water quality characteristics of Saemangeum Lake using data from the National Water Quality Measurement Network and provide basic information for water quality management. In the water quality parameters of Saemangeum Lake, water temperature and total phosphorous content were correlated, and salt, total nitrogen content, pH, and chemical oxygen demand were significantly correlated. Other parameters showed a low correlation. The spatial principal component analysis of Saemangeum Lake showed the characteristics of its four zones. The mid-to-downstream section of the river affected by freshwater inflow showed a high nutrient salt concentration, and the deep-water section of the drainage gate and the lake affected by seawater showed a high salt concentration. Two types of water qualities were observed in the intermediate water area where river water and outer sea water were mixed: waters with relatively low salt and high chemical oxygen demand, and waters with relatively low salt and high pH concentration. In the principal component analysis by time, the water quality was divided into four groups based on the observation month. Group I occurred during May and June in late spring and early summer, Group II was in early spring (March-April) and late autumn (November-December), Group III was in winter (January-February), and Group IV was in summer (July-October) during high temperatures. The water quality characteristics of Saemangeum Lake were found to be affected by the inflow of the upper Mangyeong and Dongjin rivers, and the seawater through the Garuk and Shinshi gates installed in the Saemangeum Embankment. In order to achieve the target water quality of Saemangeum Lake, it is necessary to establish water quality management measures for Saemangeum Lake along with pollution source management measures in the upper basin.