DOI QR코드

DOI QR Code

Data collection strategy for building rainfall-runoff LSTM model predicting daily runoff

강수-일유출량 추정 LSTM 모형의 구축을 위한 자료 수집 방안

  • Kim, Dongkyun (Department of Civil and Environmental Engineering, Hongik University) ;
  • Kang, Seokkoo (Department of Civil and Environmental Engineering, Hanyang University)
  • 김동균 (홍익대학교 건설환경공학과) ;
  • 강석구 (한양대학교 건설환경공학과)
  • Received : 2021.07.12
  • Accepted : 2021.08.05
  • Published : 2021.10.31

Abstract

In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.

본 연구는 소양강댐 유역을 대상으로 LSTM 기반의 일유출량 추정 딥러닝 모형을 개발한 후, 모형구조 및 입력자료의 다양한 조합에 대한 모형의 정확도를 살폈다. 첫 12년(1997.1.1-2008.12.31) 동안의 유역평균 일강수량, 일기온, 일풍속 (이상 입력), 일평균 유량 (출력)으로 이루어진 데이터베이스를 기반으로 모형을 구축하였으며, 이후 12년(2009.1.1-2020.12.31) 동안의 자료를 사용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)와 RMSE를 살폈다. 가장 높은 정확도를 보인 조합은 64개의 은닉유닛을 가진 LSTM 모형 구조에 가능한 모든 입력자료(12년치의 일강수량, 일기온, 일풍속)를 활용한 경우로서 검증기간의 NSE와 RMSE는 각각 0.862와 76.8 m3/s를 기록하였다. LSTM의 은닉유닛이500개를 초과하는 경우 과적합으로 인한 모형의 성능 저하가 나타나기 시작했으며, 1000개를 초과하는 경우 과적합 문제가 두드러졌다. 12년치의 일강수만 입력자료로 활용한 경우에도 매우 높은 성능(NSE=0.8~0.84)의 모형이 구축되었으며, 한 해의 자료만을 활용하여 학습한 경우에도 충분히 활용 가능한 정확도(NSE=0.63~0.85)를 가진 모형을 구축할 수 있었다. 특히 유량의 변동성이 큰 한 해의 자료만을 활용하여 모형을 학습한 경우 매우 높은 정확도(NSE=0.85)의 모형이 구축되었다. 학습자료가 중유량과 양극한의 유량을 모두 포함한 경우라면 5년 이상의 입력자료는 모형의 성능을 크게 개선시키지 못했다.

Keywords

Acknowledgement

이 논문은 2021년도 과학기술정보통신부 재원 한국연구재단의 이공분야기초연구사업(NRF-2021R1A2C2003471)과, 환경부 재원 환경산업기술원의 물관리연구사업(과제번호 127557)의 지원을 받았습니다.

References

  1. Ahmad, W., and Kim, D. (2019). "Estimation of flow in various sizes of streams using the Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea." International Journal of Applied Earth Observation and Geoinformation, Vol. 83, 101930. https://doi.org/10.1016/j.jag.2019.101930
  2. Bai, Y., Bezak, N., Zeng, B., Li, C., Sapac, K., and Zhang, J. (2021). "Daily runoff forecasting using a cascade long short-term memory model that considers different variables." Water Resources Management, Vol. 35, No. 4, pp. 1167-1181. https://doi.org/10.1007/s11269-020-02759-2
  3. Boulmaiz, T., Guermoui, M., and Boutaghane, H. (2020). "Impact of training data size on the LSTM performances for rainfall-runoff modeling." Modeling Earth Systems and Environment, Vol. 6, pp. 2153-2164. https://doi.org/10.1007/s40808-020-00830-w
  4. Bowes, B.D., Sadler, J.M., Morsy, M.M., Behl, M., and Goodall, J.L. (2019). "Forecasting groundwater table in a flood prone coastal city with long short-term memory and recurrent neural networks." Water, Vol. 11, No. 5, 1098. https://doi.org/10.3390/w11051098
  5. Chen, Z., Zhu, Z., Jiang, H., and Sun, S. (2020). "Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods." Journal of Hydrology, Vol. 591, 125286. https://doi.org/10.1016/j.jhydrol.2020.125286
  6. Fang, K., and Shen, C. (2020). "Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel." Journal of Hydrometeorology, Vol. 21, No. 3, pp. 399-413. https://doi.org/10.1175/jhm-d-19-0169.1
  7. Fang, K., Kifer, D., Lawson, K., and Shen, C. (2020). "Evaluating the potential and challenges of an uncertainty quantification method for long short-term memory models for soil moisture predictions." Water Resources Research, Vol. 56, No. 12, e2020WR028095.
  8. Han, J., Olivera, F., and Kim, D. (2021a). "An algorithm of spatial composition of hourly rainfall fields for improved high rainfall value estimation." KSCE Journal of Civil Engineering, Vol. 25, No. 1, pp. 356-368. https://doi.org/10.1007/s12205-020-0526-z
  9. Han, H., Choi, C., Jung, J., and Kim, H.S. (2021b). "Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow." Journal of Korea Water Resources Association, Vol. 54, No. 3, pp. 157-166. https://doi.org/10.3741/JKWRA.2021.54.3.157
  10. Hochreiter, S., and Schmidhuber, J. (1997). "Long short-term memory." Neural Computation, Vol. 9, No. 8, pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  11. Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T. (2014). "The global precipitation measurement mission." Bulletin of the American Meteorological Society, Vol. 95, No. 5, pp. 701-722. https://doi.org/10.1175/BAMS-D-13-00164.1
  12. Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, 1543. https://doi.org/10.3390/w10111543
  13. Idrees, M., Jehanzaib, M., Kim, D., Kim, T. (2021a). "Comprehensive evaluation of machine learning models for suspended sediment load inflow prediction in a reservoir." Stochastic Environmental Research and Risk Assessment, Vol. 35, pp. 1805-1823. doi: 10.1007/s00477-021-01982-6.
  14. Idrees, B.M., Lee, J.-Y., Kim, D., Kim., T.-W. (2021b) "Complementary modeling approach for estimating sedimentation and hydraulic flushing parameters using artificial neural networks and RESCON2 Model." KSCE Journal of Civil Engineering, Vol. 25, pp. 3766-3778. doi: 10.1007/s12205-021-1877-9
  15. Jehanzaib, M., Idrees, M.B., Kim, D., and Kim, T. (2021). "Comprehensive evaluation of machine learning techniques for hydrological drought forecasting." Journal of Irrigation and Drainage Engineering, Vol. 147, No. 7. doi: 10.1061/(ASCE)IR.1943-4774.0001575
  16. Jung, S., Cho, H., Kim, J., and Lee, G. (2018). "Prediction of water level in a tidal river using a deep-learning based LSTM model." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1207-1216.
  17. Jung, Y., Kim, D., Kim, D., Kim, M., and Lee, S.O. (2014). "Simplified flood inundation mapping based on flood elevation-discharge rating curves using satellite images in gauged watersheds." Water, Vol. 6, No. 5, pp. 1280-1299. https://doi.org/10.3390/w6051280
  18. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). "Rainfall-unoff modelling using long short-term memory (LSTM) networks." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 6005-6022. https://doi.org/10.5194/hess-22-6005-2018
  19. Lee, G., Kim, D., Kwon, H., and Choi, E. (2019). "Estimation of maximum daily fresh snow accumulation using an artificial neural network model." Advances in Meteorology, Vol. 2019, 2709351. doi: 10.1155/2019/2709351
  20. Lee, Y.O., Jo, J., and Hwang, J. (2017). "Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection." 2017 IEEE International Conference on big data (big data), IEEE, Boston, MA, U.S., pp. 3248-3253. doi: 10.1109/BigData.2017.8258307
  21. Park, C., and Chung, I.M. (2020). "Evaluating the groundwater prediction using LSTM model." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 273-283. https://doi.org/10.3741/JKWRA.2020.53.4.273
  22. Seo, M., Kim, D., Ahmad, W., and Cha, J.H. (2018). "Estimation of stream flow discharge using the satellite synthetic aperture radar images at the mid to small size streams." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1181-1194.
  23. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., and Woo, W.C. (2015). "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." Advances in Neural Information Processing Systems, pp. 802-810.
  24. Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.Y., Wong, W.K., and Woo, W.C. (2017). "Deep learning for precipitation nowcasting: A benchmark and a new model." arXiv Preprint, arXiv:1706.3458.
  25. Silva, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. and Hassabis, D. (2017). "Mastering the game of go without human knowledge." Nature, Vol. 550, No. 7676, pp. 354-359. https://doi.org/10.1038/nature24270
  26. Sit, M., Demiray, B.Z., Xiang, Z., Ewing, G.J., Sermet, Y., and Demir, I. (2020). "A comprehensive review of deep learning applications in hydrology and water resources." Water Science and Technology, Vol. 82, No. 12, pp. 2635-2670. https://doi.org/10.2166/wst.2020.369
  27. Tomlinson, C.J., Chapman, L., Thornes, J.E., and Baker, C. (2011). "Remote sensing land surface temperature for meteorology and climatology: A review." Meteorological Applications, Vol. 18, No. 3, pp. 296-306. https://doi.org/10.1002/met.287
  28. Yin, J., Deng, Z., Ines, A.V., Wu, J., and Rasu, E. (2020). "Forecast of short-erm daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)." Agricultural Water Management, Vol. 242, 106386. https://doi.org/10.1016/j.agwat.2020.106386