• 제목/요약/키워드: ring derivations

검색결과 126건 처리시간 0.018초

ON JORDAN AND JORDAN HIGHER DERIVABLE MAPS OF RINGS

  • Liu, Lei
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.957-972
    • /
    • 2020
  • Let 𝓡 be a 2-torsion free unital ring containing a non-trivial idempotent. An additive map 𝛿 from 𝓡 into itself is called a Jordan derivable map at commutative zero point if 𝛿(AB + BA) = 𝛿(A)B + B𝛿(A) + A𝛿(B) + 𝛿(B)A for all A, B ∈ 𝓡 with AB = BA = 0. In this paper, we prove that, under some mild conditions, each Jordan derivable map at commutative zero point has the form 𝛿(A) = 𝜓(A) + CA for all A ∈ 𝓡, where 𝜓 is an additive Jordan derivation of 𝓡 and C is a central element of 𝓡. Then we generalize the result to the case of Jordan higher derivable maps at commutative zero point. These results are also applied to some operator algebras.

Derivations on Semiprime Rings and Banach Algebras, I

  • Kim, Byung-Do;Lee, Yang-Hi
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.165-182
    • /
    • 1994
  • The aim of this paper is to give the partial answer of Vukman's conjecture [2]. From the partial answer we also generalize a classical result of Posner. We prove the following result: Let R be a prime ring with char$(R){\neq}2,3$, and 5. Suppose there exists a nonzero derivation $D:R{\rightarrow}R$ such that the mapping $x{\longmapsto}$ [[[Dx,x],x],x] is centralizing on R. Then R is commutative. Using this result and some results of Sinclair and Johnson, we generalize Yood's noncom-mutative extension of the Singer-Wermer theorem.

  • PDF

Strong Higher Derivations on Ultraprime Banach Algebras

  • Lee, Young-Whan;Park, Kyoo-Hong
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper we show that if {$H_n$} is a continuous strong higher derivation of order n on an ultraprime Banach algebra with a constant c, then $c||H_1||^2{\leq}4||H_2||$ and for each $1{\leq}l$ < n $$c^2||H_1||\;||H_{n-l}{\leq}6||H_n||+\frac{3}{2}\sum_{\array{i+j+k=n\\i,j,k{\geq}1}}||H_i||\;||H_j||\;||H_k||+\frac{3}{2}\sum_{\array{i+k=n\\i{\neq}l,\;n-1}}||H_i||\;||H_k|| $$ and for a strong higher derivation {$H_n$} of order n on a prime ring A we also show that if [$H_n$(x),x]=0 for all $x{\in}A$ and for every $n{\geq}1$, then A is commutative or $H_n=0$ for every $n{\geq}1$.

  • PDF

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

On Skew Centralizing Traces of Permuting n-Additive Mappings

  • Ashraf, Mohammad;Parveen, Nazia
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.1-12
    • /
    • 2015
  • Let R be a ring and $D:R^n{\longrightarrow}R$ be n-additive mapping. A map $d:R{\longrightarrow}R$ is said to be the trace of D if $d(x)=D(x,x,{\ldots}x)$ for all $x{\in}R$. Suppose that ${\alpha},{\beta}$ are endomorphisms of R. For any $a,b{\in}R$, let < a, b > $_{({\alpha},{\beta})}=a{\alpha}(b)+{\beta}(b)a$. In the present paper under certain suitable torsion restrictions it is shown that D = 0 if R satisfies either < d(x), $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$ or ${\ll}$ d(x), x > $_{({\alpha},{\beta})}$, $x^m$ > $_{({\alpha},{\beta})}=0$, for all $x{\in}R$. Further, if < d(x), x > ${\in}Z(R)$, the center of R, for all $x{\in}R$ or < d(x)x - xd(x), x >= 0, for all $x{\in}R$, then it is proved that d is commuting on R. Some more related results are also obtained for additive mapping on R.

Characterizations of Lie Triple Higher Derivations of Triangular Algebras by Local Actions

  • Ashraf, Mohammad;Akhtar, Mohd Shuaib;Jabeen, Aisha
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.683-710
    • /
    • 2020
  • Let ℕ be the set of nonnegative integers and 𝕬 be a 2-torsion free triangular algebra over a commutative ring ℛ. In the present paper, under some lenient assumptions on 𝕬, it is proved that if Δ = {𝛿n}n∈ℕ is a sequence of ℛ-linear mappings 𝛿n : 𝕬 → 𝕬 satisfying ${\delta}_n([[x,\;y],\;z])\;=\;\displaystyle\sum_{i+j+k=n}\;[[{\delta}_i(x),\;{\delta}_j(y)],\;{\delta}_k(z)]$ for all x, y, z ∈ 𝕬 with xy = 0 (resp. xy = p, where p is a nontrivial idempotent of 𝕬), then for each n ∈ ℕ, 𝛿n = dn + 𝜏n; where dn : 𝕬 → 𝕬 is ℛ-linear mapping satisfying $d_n(xy)\;=\;\displaystyle\sum_{i+j=n}\;d_i(x)d_j(y)$ for all x, y ∈ 𝕬, i.e. 𝒟 = {dn}n∈ℕ is a higher derivation on 𝕬 and 𝜏n : 𝕬 → Z(𝕬) (where Z(𝕬) is the center of 𝕬) is an ℛ-linear map vanishing at every second commutator [[x, y], z] with xy = 0 (resp. xy = p).