JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 7, June 1994

Strong Higher Derivations on Ultraprime Banach Algebras

*Young-Whan Lee and **Kyoo-Hong Park

ABSTRACT. In this paper we show that if $\{H_n\}$ is a continuous strong higher derivation of order n on an ultraprime Banach algebra with a constant c, then $c||H_1||^2 \leq 4||H_2||$ and for each $1 \leq l < n$

$$c^{2}||H_{l}|| ||H_{n-l}|| \leq 6||H_{n}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k\geq 1}} ||H_{i}|| ||H_{j}|| ||H_{k}|| + \frac{3}{2} \sum_{\substack{i+k=n\\i\neq l, n-l}} ||H_{i}|| ||H_{k}||$$

and for a strong higher derivation $\{H_n\}$ of order n on a prime ring A we also show that if $[H_n(x), x] = 0$ for all $x \in A$ and for every $n \ge 1$, then A is commutative or $H_n = 0$ for every $n \ge 1$.

I. Introduction

Let A be a ring. For each a, $b \in A$, $M_{a,b} : A \to A$ is a mapping defined by $M_{a,b}(x) = axb$ for $x \in A$. Recall that A is prime if $M_{a,b} = 0$ implies a = 0 or b = 0 for each $a, b \in A$.

A complex normed algebra is *ultraprime* with a constant c if there exists a constant c > 0 such that for all $a, b \in A$

$$||M_{a,b}|| \ge c||a|| ||b||$$

Note that every prime C^* -algebra is ultraprime with constant 1.

Received by the editors on June 27, 1994.

1980 Mathematics subject classifications: Primary 46H40.

A sequence $\{H_0, H_1, \dots, H_n\}$ of linear operators on A is a higher derivation of order n if for each $m = 0, 1, 2, \dots, n$ and any $x, y \in A$ the operator H_m satisfies the following equality

$$H_m(xy) = \sum_{i=0}^m H_i(x)H_{m-i}(y)$$

A higher derivation $\{H_n\}$ of order n is strong if H_0 is an identity operator.

Note that a strong higher derivation of order 1 is a derivation.

In [2], E. Posner proved that if the composition d_1d_2 of derivations d_1 , d_2 of a prime ring A of characteristic not 2 is a derivation then either $d_1 = 0$ or $d_2 = 0$, and M. Brešer estimated the distance of d_1d_2 to the set of all generalized derivations of A in [1].

In this paper, we show that the Posner's result can be extended to strong higher derivations and estimate the distance of H_i $(i = 1, 2, \dots, n)$ where $\{H_n\}$ is a continuous higher strong derivation of order n.

II. The Results

LEMMA 1. Let a sequence $\{H_m\}$ be a strong higher derivation of any order on a ring A. Then for all $x, y, z \in A$ and $n \ge 1$,

$$H_{n}(xyz) - H_{n}(xy)z - xH_{n}(yz) + xH_{n}(y)z$$

= $\sum_{\substack{i+j=n\\i,j \ge 1}} H_{i}(x)yH_{j}(z) + \sum_{\substack{i+j+k=n\\i,j,k \ge 1}} H_{i}(x)H_{j}(y)H_{k}(z)$

118

PROOF. For all $x, y, z \in A$

$$H_n(xyz) = \sum_{\substack{i+j+k=n\\i,j,k\ge 1}} H_i(x)H_j(y)H_k(z),$$
$$H_n(xy)z = \sum_{\substack{i+j=n\\i,j,\ge 1}} H_i(x)H_j(y)z$$

and

$$xH_n(yz) = \sum_{\substack{i+j=n\\i,j\geq 0}} xH_i(y)H_j(z).$$

Thus for all $x, y, z \in A$,

$$H_n(xyz) - H_n(xyz) - xH_n(yz) + xH_n(y)z$$

= $\sum_{\substack{i+j=n\\i,j\geq 1}} H_i(x)yH_j(z) + \sum_{\substack{i+j+k=n\\i,j,k\geq 1}} H_i(x)H_j(y)H_k(z).$

The following lemma can be proved by direct computations

LEMMA 2. Let f, g be functions on a ring A. Then for all x, y, $z, w, u \in A$,

$$\begin{aligned} 2f(x)yg(z)wf(u) &= \{f(x)yg(z) + g(x)yf(z)\}wf(u) \\ &+ f(x)y\{g(z)wf(u) + f(z)wg(u)\} \\ &- \{f(x)(yf(z)w)g(u) + g(x)(yf(z)w)f(u)\} \end{aligned}$$

THEOREM 3. Let $\{H_m\}$ be a continuous strong higher derivation of order n on an ultraprime Banach algebra A with a constant c. Then

- (1) $c||H_1||^2 \leq 4||H_2||.$
- (2) $c^2 ||H_2|| ||H_1|| \le 6 ||H_3|| + \frac{3}{2} ||H_1||^3$.

(3) For each $1 \leq l \leq n$,

$$c^{2}||H_{l}|| ||H_{n-l}|| \leq 6||H_{n}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k\leq 1}} ||H_{i}|| ||H_{j}|| ||H_{k}|| + \frac{3}{2} \sum_{\substack{i+j=n\\i\neq l,n-l}} ||H_{i}|| ||H_{j}||.$$

In particular if $H_2 = 0$ then $H_1 = 0$, and if $H_3 = 0$ then

$$c||H_1||^2 \le 4||H_2|| \le \frac{6}{c^2}||H_1||^2.$$

PROOF. By Lemma 1, for every $x, y, z \in A$ and $1 \le l < n$

$$\begin{aligned} H_n(xyz) - H_n(xy)z - xH_n(yz) + xH_n(y)z \\ &= \sum_{\substack{i+j=n\\i,j \ge 1}} H_i(x)yH_j(y) + \sum_{\substack{i+j+k=n\\i,j,k \ge 1}} H_i(x)H_j(y)H_k(z) \\ &= H_l(x)yH_{n-l}(z) + H_{n-l}(x)yH_l(y) + \sum_{\substack{i+j=n\\i \ne l,n-l}} H_i(x)yH_j(y) \\ &+ \sum_{\substack{i+j+k=n\\i \ne l,n-l}} H_i(x)H_j(y)H_k(z), \end{aligned}$$

By Lemma 2, for every $x, y, z, w, u \in A$

$$2||H_{l}(x)yH_{n-l}(z)wH_{l}(u)|| \le 3(4||H_{n}|| + \sum_{\substack{i+j=n\\i\neq l,n-l}} ||H_{i}|| ||H_{j}|| + \sum_{\substack{i+j+k=n\\i,j,k\leq 1}} ||H_{i}|| ||H_{k}||) \times ||x|| ||y|| ||z|| ||w|| ||u|| ||H_{l}||,$$

$$\begin{split} &||M_{H_{l}}(x), H_{n-l}(z)wH_{l}(u)|| \\ \leq (6||H_{n}|| + \frac{3}{2} \sum_{\substack{i+j=n\\i \neq l, n-l}} ||H_{i}|| ||H_{j}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k \geq 1}} ||H_{i}|| ||H_{j}|| ||H_{k}||) \\ &\times ||x|| ||z|| ||w|| ||w|| ||u|| ||H_{l}||, \end{split}$$

120

$$c||M_{H_{l}(z)}, H_{n-l}(u)|| \leq (6||H_{n}|| + \frac{3}{2} \sum_{\substack{i+j=n\\i \neq l, n-l}} ||H_{i}|| ||H_{j}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k \ge 1}} ||H_{i}|| ||H_{k}|| \rangle \times ||z|| ||u||,$$

and

$$c^{2}||H_{l}|| ||H_{n-l}|| \leq 6||H_{n}|| + \frac{3}{2} \sum_{\substack{i+j=n\\i\neq l,n-l}} ||H_{i}|| ||H_{j}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k\geq 1}} ||H_{i}|| ||H_{j}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k\geq 1}} ||H_{i}|| ||H_{j}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i,j,k\geq 1}} ||H_{i}|| + \frac{3}{2} \sum_{\substack{i+j+k=n\\i\neq l,n-l}} ||H_{i$$

The proof of the theorem is completed.

THEOREM 4. Let $\{H_m\}$ and $\{F_m\}$ be strong higher derivations of any order on a prime algebra A of characteristic not 2. If $\{H_m F_m\}$ is a strong higher derivation of any order, then for each $n \ge 1$ either $H_n = 0$ or $F_n = 0$.

PROOF. Let $\{H_nF_n\}$ be a strong higher derivation. Since H_1 , F_1 and H_1F_1 are derivations, by Porsner's theorem, $H_1 = 0$ or $F_1 = 0$. Since for every $x, y \in A$

$$H_2F_2(xy) = xH_2F_2(y) + H_2F_2(x)y + H_1F_1(x)H_1F_1(y),$$

 H_2F_2 is a derivation and so $H_2 = 0$ or $F_2 = 0$. By the induction, $H_n = 0$ or $F_n = 0$ for every $n \ge 0$.

In [2], Posner showed that if D is a derivation on a prime algebra A with [D(x), x] = 0 for all $x \in A$, then A is commutative or D = 0. We obtain the following theorem from it.

*YOUNG-WHAN LEE AND **KYOO-HONG PARK

THEOREEM 5. Let $\{H_n\}$ be a strong higher derivation of order n on a prime ring A. If $[H_n(x), x] = 0$ for all $x \in A$ and for every $1 \leq n$, then A is commutative or $H_n = 0$ for every $n \geq 1$.

PROOF. By Posner's theorem, A is commutative or $H_1 = 0$. If A is not commutative, then H_2 is a derivation with $[H_2x, x] = 0$ for all $x \in A$. Thus $H_2 = 0$. By induction, $H_n = 0$ for every $n \ge 1$.

If $H_n \neq 0$ for some *n*, there is an *i* such that $H_1 = H_2 = \cdots = H_{i-1} = 0$ and $H_i \neq 0$. Then H_i is a derivation with $[H_i x, x] = 0$ for all $x \in A$. By Posner's theorem, A is commutative.

References

- 1. M. Brešer, On the Distance of the Composition of Two Derivation to the generalized Derivations, Glasgow Math. J. 33 (1991), 89-93.
- E. Posner, Derivations on Prime Rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

DEPARTMENT OF MATHEMATICS TAEJON UNIVERSITY TAEJON 300-716, KOREA **

DEPARTMENT OF MATHEMATICS EDUCATION SEOWON UNIVERSITY CHONGJU 360-742, KOREA