• Title/Summary/Keyword: ring VCO

Search Result 45, Processing Time 0.031 seconds

Design of High Performance On -chip Voltage Controlled Oscillator Using GaAs MESFET (GaAs MESFET을 이용한 고성능 온-칩 전압 제어 발진기 설계)

  • 김재영;이범철;최종문;최우영;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.24-30
    • /
    • 1996
  • In this paper, we designed a new type of high frequency on-chip voltage controlled oscillator (VCO) using GaAs MESFET, and their performances were comapred with those of the conventional VCO. Each VCO was designed with three-to-five ring oscillator and inverter, buffer and NOR gate were implemented by GaAs source coupled FET logic, which has better speed and noise performance compared to other GaAs MESFET logic. SPICE simulation showed that the gain of conventional and our new VCO was 1.24[GHz/V], 0.54[GHz/V], respectively. The frquency tuning range were 2.31 to 3.55 [GHz] for conventional VCO and 2.47 to 3.01[GHz] for our new design. This shows that the factor of two gain reductin was achieved without too much sacrifice in the oscillation frequency. For our new VCO, the average temperature index was -2[MHz/.deg. C] in the range of -20~85[.deg. C] the power supply noise index was 5[MHz/%] for 5.3[V].+-.10[%] and total power consumption was 60.58[mW].

  • PDF

A Low-Power Low-Complexity Transmitter for FM-UWB Systems

  • Zhou, Bo;Wang, Jingchao
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.194-201
    • /
    • 2015
  • A frequency modulated ultra-wideband (FM-UWB) transmitter with a high-robust relaxation oscillator for subcarrier generation and a dual-path Ring VCO for RF FM is proposed, featuring low power and low complexity. A prototype 3.65-4.25 GHz FM-UWB transceiver employing the presented transmitter is fabricated in $0.18{\mu}m$ CMOS for short-range wireless data transmission. Experimental results show a bit error rate (BER) of $10^{-6}$ at a data rate of 12.5 kb/s with a communication distance of 60 cm is achieved and the power dissipation of 4.3 mW for the proposed transmitter is observed from a 1.8 V supply.

A Wideband Clock Generator Design using Improved Automatic Frequency Calibration Circuit (개선된 자동 주파수 보정회로를 이용한 광대역 클록 발생기 설계)

  • Jeong, Sang-Hun;Yoo, Nam-Hee;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.451-454
    • /
    • 2011
  • In this paper, a wideband clock generator using novel Automatic frequency calibration(AFC) scheme is proposed. Wideband clock generator using AFC has the advantage of small VCO gain and wide frequency band. The conventional AFC compares whether the feedback frequency is faster or slower then the reference frequency. However, the proposed AFC can detect frequency difference between reference frequency with feedback frequency. So it can be reduced an operation time than conventional methods AFC. Conventional AFC goes to the initial code if the frequency step changed. This AFC, on the other hand, can a prior state code so it can approach a fast operation. In simulation results, the proposed clock generator is designed for DisplayPort using the CMOS ring-VCO. The VCO tuning range is 350MHz, and a VCO frequency is 270MHz. The lock time of clock generator is less then 3us at input reference frequency, 67.5MHz. The phase noise is -109dBC/Hz at 1MHz offset from the center frequency. and power consumption is 10.1mW at 1.8V supply and layout area is $0.384mm^2$.

Implementation of Voltage Controlled Oscillator Using Planar Structure Split Ring Resonator (SRR) (평면형 구조의 분리형 링 공진기를 이용한 전압제어 발진기 구현)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1538-1543
    • /
    • 2013
  • In this paper, a novel split ring resonator is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator. Oscillator using proposed split ring resonator is designed, it has improved phase noise characteristics. At the fundamental frequency of 5.8GHz, 7.22dBm output power and -83.5 dBc@100kHz phase noise have been measured for oscillator with split ring resonator. The phase noise characteristics of oscillator is improved about 9.7dB compared to one using the general ${\lambda}/4$ microstrip resonator. Next, we designed voltage controlled oscillator using proposed split ring resonator with varactor diode. The VCO has 125MHz tuning range from 5.833GHz to 5.845GHz, and phase noise characteristic is -118~-115.5 dBc/Hz@100KHz. Due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks (센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기)

  • Shim, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.121-126
    • /
    • 2019
  • The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.

Design of a High Speed CMOS PLL with a Two-stage Self-feedback Ring Oscillator (자체귀환형 2단 고리발진기를 이용한 고속 CMOS PLL 설계)

  • 문연국;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.353-356
    • /
    • 1999
  • A 3.3V PLL(Phase Locked loop) is designed for a high frequency, low voltage, and low power applications. This paper proposes a new PLL architecture to improve voltage to frequency linearity of VCO(Voltage controlled oscillator) with new delay cell. The proposed VCO operates at a wide frequency range of 30MHz~1㎓ with a good linearity. The DC-DC voltage up/down converter is utilized to regulate the control voltage of the two-stage VCO. The designed PLL architecture is implemented on a 0.6${\mu}{\textrm}{m}$ n-well CMOS process. The simulation results show a locking time of 2.6$\mu$sec at 1Hz, Lock in range of 100MHz~1㎓, and a power dissipation of 112㎽.

  • PDF

Optimized Voltage Controlled Oscillator(VCO) for Fractional-N Frequency Synthesizer (Fractional-N 주파수 합성기를 위한 위상 잡음 특성이 개선된 전압 제어 발진기)

  • Ahn, Jin-Oh;Seo, Woo-Hyeong;Kim, In-Jeong;Kim, Dae-Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.519-520
    • /
    • 2006
  • In this paper, we propose a voltage-controlled ring oscillator (VCO) for a 900 MHz low-noise fractional-N frequency synthesizer. The VCO delay cell is based on an nMOS source-coupled pair with load elements [1] and a combined tail current sources which consist of a large and a small current source to control the integer and fractional behaviors, respectively. The Spectre simulation results of the scheme in a 0.18um CMOS process show the accurate control of the KVCO better than the conventional one.

  • PDF

Design of Low voltage High speed Phase Locked Loop (고속 저전압 위상 동기 루프(PLL) 설계)

  • Hwang, In-Ho;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.267-269
    • /
    • 2007
  • PLL(Phase Locked Loop) are widely used circuit technique in modern electronic systems. In this paper, We propose the low voltage and high speed PLL. We design the PFD(Phase Frequency Detector) by using TSPC (True Single Phase Clock) circuit to improve the performance and solve the dead-zone problem. We use CP(Charge Pump} and LP(Loop filter) for Negative feedback and current reusing in order to solve current mismatch and switch mismatch problem. The VCO(Voltage controlled Oscillator) with 5-stage differential ring oscillator is used to exact output frequency. The divider is implemented by using D-type flip flops asynchronous dividing. The frequency divider has a constant division ratio 32. The frequency range of VCO has from 200MHz to 1.1GHz and have 1.7GHz/v of voltage gain. The proposed PLL is designed by using 0.18um CMOS processor with 1.8V supply voltage. Oscillator's input frequency is 25MHz, VCO output frequency is 800MHz and lock time is 5us. It is evaluated by using cadence spectra RF tools.

  • PDF

Design of a Dual band CMOS Frequency Synthesizer for GSM and WCDMA (GSM / WCDMA 통신용 이중대역 CMOS 주파수 합성기 설계)

  • Han, Yun-Tack;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.435-436
    • /
    • 2008
  • This paper presents a dual band frequency synthesizer for GSM and Wideband CDMA which is designed in a standard 0.13um CMOS 1P6M process. The shared components include phase frequency detector (PFD), charge pump (CP), loop filter, integer frequency divider(128/129 DMP, 4bit PC, 3bit SC) and Low noise Ring-VCO. A high-speed low power dual modulus prescaler is proposed to operate up to 2.1GHz at 3.3V supply voltage with 2mW power consumption by simulation. The simulated phase noise of VCO is -101dBc/Hz at 200kHz offset frequency from 1.9GHz.

  • PDF

A Wide Range PLL for 64X CD-ROMs & l0X DVD-ROMs (64배속 CD-ROM 및 10배속 DVD-ROM용 광대역 위상 고정 루프)

  • 진우강;이재신;최동명;이건상;김석기
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.340-343
    • /
    • 1999
  • In this paper, we propose a wide range PLL(Phase Locked Loop) for 64X CD-ROMs & l0X DVD-ROMs. The frequency locking range of the Proposed PLL is 75MHz~370MHz. To reduce jitters caused by large VCO gain and supply voltage noise, a new V-I converter and a differential delay cell are used in 3-stage ring VCO, respectively. The new V-I converter has a 0.6V ~ 2.5V wide input range. In addition, we propose a new charge pump which has perfect current matching characteristics for the sourcing/sinking current. This new charge pump improves the locking time and the locking range of the PLL. This Chip is implemented in 0.25${\mu}{\textrm}{m}$ CMOS process. It consumes 55㎽ in worst case with a single 2.5V power supply.

  • PDF