• 제목/요약/키워드: rigid motion

검색결과 675건 처리시간 0.02초

미끄럼운동을 동반하는 강체 블록 구조물의 로킹진동 - 수평방향과 수직방향의 여진진동수가 다른 경우에 대하여 - (Rocking Vibration of Rigid Block Structure Accompaning Sliding Motion - In the Case of Two Dimensional Harmonic Excitation with Different Frequencies -)

  • 정만용;김정호;양인영
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.879-889
    • /
    • 2003
  • This research deals with the nonlinearities of rocking vibration associated with impact and sliding on the rocking behavior of rigid block under two dimensional sinusoidal excitation which has different frequencies in two excitation direction. The varied excitation direction influences not only the rocking response but also the sliding motion and the rocking response shape. Chaotic responses are observed in wider excitation amplitude region, when the frequencies in each excitation direction are different. The complex behavior of chaotic response, in the phase space, is related with the trajectory of base excitation and sliding motion.

섭동법을 이용한 부유 한성체의 동역학 해석 (Dynamic Analysis of Floating Flexible Body Using Perturbation Method)

  • 성관제;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1354-1359
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of floating flexible body. In dealing with the dynamics of free-floating body, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In the previous paper, we proposed the use of perturbation method to the coupled equations of motion and derived zero-order and first-order equations of motion. The derivation process was lengthy and tedious. Hence, in this paper, we propose a new approach to the same problem by applying the perturbation method to the Lagrange's equations, thus providing a systematic approach to the addressed problem. Theoretical derivations show the efficacy of the proposed method.

면외변형 링 요소를 이용한 고유해석 (An Eigen Analysis with Out-of-Plane Deformable Ring Element)

  • 문원주;민옥기;김용우
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1719-1730
    • /
    • 1993
  • This paper presents the theoretical natural frequencies of out-of-plane deformable ring based on the variables such as out-of-plane deflection, torsional rotation and shear rotation. Based on the same variables, a finite element eigen analysis is carried out by using the $C^0$-continuous, isoparametric element which has three nodes per element and three degrees-of-freedom at each node. Numerical experiments are peformed to find the integration scheme which produces accurate natural frequencies, natural modes and correct rigid body motion. The uniformly reduced integration and the selective reduced integration give more accurate numerical frequencies than the uniformly full integration, but the uniformly reduced integration produces incorrect rigid body motion while selective reduced integration does correct one. Therefore, the ring element based on the three variables which employes selective reduced integration is recommended to avoid spurious modes, to alleviate the error due to shear locking and to produce correct rigid body motion, simultaneously.

Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석 (Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis)

  • 안윤호;;장덕영;박경우;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

DETERMINING 3-D MOTION OF RIGID OBJECTS USING LINE CORRESPONDENCES

  • Kim, Won-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.273-280
    • /
    • 1994
  • A linear method for determining three-dimensional motion of a rigid object is presented. In this method, two three-dimensional line correspondences are used. By using three-dimensional information of the features and observing that the rotation is unique regardless of the translation vector, the two components of motion parameters (rotation and translation) are computed separately. Also in this paper, the solution is given without a scale factor which is necessary in other methods that use only the two-dimensional projective constraints.

  • PDF

Self-similarity in the equation of motion of a ship

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.333-346
    • /
    • 2014
  • If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

Dynamic Modelling of Planar Mechanisms Using Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1977-1985
    • /
    • 2003
  • In the present study, the dynamic modelling of planar mechanisms that consist of a system of rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a dynamically equivalent constrained system of particles. Then for the resulting equivalent system of particles, the concepts of linear and angular momentums are used to generate the equations of motion without either introducing any rotational coordinates or distributing the external forces and force couples over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.

유정압 테이블의 동적 Modeling에 관한 연구 (A Study on the Dynamic Modeling of a Hydrostatic Table)

  • 노승국;이찬홍;박천홍
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.150-156
    • /
    • 1998
  • In this paper, a 3-DOF(Degree Of Freedom) rigid body model is developed for dynamic analysis of a hydrostatic table. The dynamic coefficients, stiffness and damping constant of each pad are calculated from the mass flow continuity condition. The validity of this model is examined in theoretical and experimental method. The dynamic behavior when mass unbalances and local variations of stiffness and damping of pads present is analyzed for real applications of hydrostatic table. Since the theoretical and experimental results show goof agreement. it can be said that the 3-DOF rigid body model is useful for the dynamic model of the table. The analysis reveals that the pitching motion is the dominant mode of vibration, It also reveals that unbalanced loads can increase amplitude of tilting motion and reduce natural frequencies and damping capacity of the hydrostatic table.

  • PDF

Thrust estimation of a flapping foil attached to an elastic plate using multiple regression analysis

  • Kumar, Rupesh;Shin, Hyunkyoungm
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.828-834
    • /
    • 2019
  • Researchers have previously proven that the flapping motion of the hydrofoil can convert wave energy into propulsive energy. However, the estimation of thrust forces generated by the flapping foil placed in waves remains a challenging task for ocean engineers owing to the complex dynamics and uncertainties involved. In this study, the flapping foil system consists of a rigid NACA0015 section undergoing harmonic flapping motion and a passively actuated elastic flat plate attached to the leading edge of the rigid foil. We have experimentally measured the thrust force generated due to the flapping motion of a rigid foil attached to an elastic plate in a wave flume, and the effects of the elastic plates have been discussed in detail. Furthermore, an empirical formula was introduced to predict the thrust force of a flapping foil based on our experimental results using multiple regression analysis.