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ABSTRACT

The stability problem of steady motion of a rigid body with multi-elastic appendages
and multi-liquid- filled cavities, in the presence of no external forces or torque, is con-
sidered in this paper. The flexible appendages are modeled as the clamped-free-free-
free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of
liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a
finite number of degrees of freedom. Assuming that stationary holonomic constraints
imposed on the body allow its rotation about a spatially fixed axis, the equation of
motion for such a systematic configuration can be very complex. It consists of a set of
ordinary differential equations for the motion of the rigid body, the uniform rotation
of the contained liquids, the motion of discrete elastic parts, and a set of partial dif-
ferential equations for the elastic appendages supplemented by appropriate initial and
boundary conditions. In addition, for such a hybrid system, under suitable assump-
tions, their equations of motion have four types of first integrals, i.e., energy and area,
Helmholtz’ constancy of liquid- vortexes, and the constant of the Poisson equation of
motion. Chetaev’s effective method for constructing Liapunov functions in the form
of a set of first integrals of the equations of the perturbed motion is employed to in-
vestigate the sufficient stability conditions of steady motions of the complete system
in the sense of Liapunov, i.e., with respect to the variables determining the motion of
the solid body and to some quantities which define integrally the motion of flexible
appendages. Thes¢ sufficient conditions take into account the vortexes of the con-
tained liquids, the vibration of the flexible components, and the coupling among the
liquid-elasticity-solid.
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1. INTRODUCTION

It has been well-known that some of the modern spacecraft is composed of a rigid body, liquid
and elastic components. Broadly speaking, the coupling among them makes the spacecraft attitude
dynamics very complex. The equations governing such a systematic configuration, under suitable
assumptions, consist of a set of ordinary differential equations for the rigid body and a set of partial
differential equations for the contained liquid and elastic appendages supplemented by appropriate
initial and boundary conditions., This kind of coupling system has an infinite number of degrees of
freedom.

In 1958 the U.S. Satellite Explore I tumbled after only a few hours of flight. It was concluded
that the four turnstile wire antennae were dissipating energy, causing a transfer of body spin axis
from the axis of minimum inertia to a transverse axis of maximum inertia. Recently the anomalies
in spinning rockets and spacecraft carrying liquid loads have been reported. The main features of
these anomalies are the instability of the spacecraft attitude dynamics which manifests as exponential
growths in nutation, liquid oscillations or even the control torque.

The dynamics of the liquid-filled rigid body with flexible appendages is one of the pressing diffi-
cult problems in the field of space sophisticated technology. There has been a lot of literature which
is devoted to these difficult problems concerning the control and stability of the rigid spacecraft with
flexible appendages. The papers or books written by Meirovitch (1970), Morozov et al. (1973),
Kane et al. (1983), Posbergh et al. (1987), Junkins ez al. (1991, 1993), Matsuno ef al. (1996), should
provide copious useful information. There has also been lots of literature on the problems concern-
ing the dynamics of contained rotating liquids, such as the papers written by Rumyantsev (1964),
Pfeiffer (1977), Agrawal (1982), Or et. al. (1994), Kuang (1992), Kuang et al. (1994a,b, 1997).
Rubanovskii (1982) studied the stability of steady motions of a rigid body with an elastic shell par-
tially filled liquid. The sufficient conditions of stability are derived from the solution of the problem
dealing with the minimum problem of the changed potential energy of the system by studying the
second variation. Wang & Kuang (1993) investigated the nonlinear stability conditions of steady mo-
tions of liquid-filled rigid body with linear flexible shear beams using “the Energy Casimir” method.
Rumyantsev (1995) compared the three methods of constructing Lyapunov functions for the system
with a finite number of degrees of freedom. The three methods are: 1) Chetaev’s method developed
since the 1950’s in Russia: 2) the Energy-Casimir method developed in the 1980’s in U. S. A.: 3)
the Energy-Momentum method employed for Hamiltonian system (Holm et al. 1985). The research
showed that Chetaev’s method is the most generalized method which can theoretically be used to in-
vestigate the stability problem of the perturbed motion of the nonlinear dynamical system including
the system defined by the distributed parameters.

In this paper Chetaev’s effective method for constructing Lyapunov functions in the form of a
set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient
stability conditions of steady motions of the complete system in the sense of Lyapunov, i.e., with
respect to the variables determining the motion of the solid body and to some quantities which
define integrally the motion of flexible appendages.
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Assuming that the shape of liquid tanks is ellipsoidal and that the completely filled liquids are in-
viscid and incompressible, the motion of contained liquids can be simplified as the uniform vortex
motion, which makes the problem of infinite degrees of freedom of the contained liquids changed
into the problem of finite degrees of freedom. In addition, the elastic solar array paddle is simplified
as a clamped-free-free-free rectangular plate (Matsuno er al. 1996), the nutational dampers are
modeled as the mass-spring oscillators, and the multi-liquid-filled cavities are located symmetrically
and off-centrally.

2. PROBLEM FORMULATION AND FIRST INTEGRALS

Let O¢p¢ be the space-fixed system of coordinates; Oy, . be the body-fixed system of coordinates
and be along the principal axes of the ellipsoidal tank; Let a;, b;, ¢; be the three semi-axis length of
the ellipsoid; the point O be the center of mass of the system; 1, 2, v3 be cosines of angles formed
by axis n with axes z,y,z; & (w1,ws,ws) be the angular velocity vector of the rigid body; Q;
(©51, 42, Q;3) be the uniform vortex vector of the contained liquid in the cavity-j ( = 1,2, ...,n);
I, I, I3 denote the sums of the moments of inertia of the centered rigid body and of the Zhukovsky
equivalent solid bodies of the contained liquids in all ellipsoidal tanks; I;1, I;2, I;3 denote the differ-
ences between the moments of inertia of the “consolidated” liquid and of Zhukovsky equivalent solid
body of the contained liquid in the ellipsoidal tank-j. Let z;,y;, z; be the coordinates of the center
of mass of liquid contained in the tank-j in the body-fixed system of coordinates. Let A;, By, C}
be the moments of inertia of the centered rigid body with respect to the body axis, respectively. Let
A;- , B}, C; be the moments of inertia of the Zhukovsky equivalent solid body of the liquid contained
in the ellipsoidal tank-;. Then

L = Ai+) A
Jj=1

I, = Bi+)» B;

i=1
I = Ci+).C;
=1
* M, (b7 —¢})? 2, .2
AJ = 5a ljz. n ]2 + Ma(y] +Zj)
j 3
. M, (¢} —a)? 2, .2
45 = 5 c?-}-a? + Ma(zj + z3)
M ((12 _ b2 2
A* — a 2 J Ma 2 2
J 5 a§+b? + Ma(zj +y5)
bic
Iy = O.8Mab2 T
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Figure 1. The schematic configuration of the liquid-filled rigid body with flexible appendages. (The
discrete oscillators are not shown in here).
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where M, = 4wpa;b;c; /3, in here p is the density of the liquid contained in the ellipsoidal tank-j.
Let the length of solar array paddle be L;, the width be Lo, the thickness be C, the distance
between the axis O, and the clamped side of the solar array paddle be d; the components of the elastic
deformation vector of the plate be u(y, z,t), v(y, 2,t), w(y, 2, t), where —0.5L; < z < 0.5L5 and
d < |y| € d+ Lo; the mass density per unit volume be p; the Poisson’s ratio be v; the modulus of
elasticity be E, in here, it is also assumed that the nominal positions of the neutral surface of solar
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arrays under the undeformable states are along O, plane of coordinates. Let the mass of the discrete
oscillator-g be M, (g = 1,2, ..., N); the relative equilibrium point of oscillator-g be 741,742,743 the
stiffness coefficients of the oscillator-g be Ky, K42 and K3 along z, y and z-axis, respectively;
the components of the relative displacement vector of the oscillator be ugy, ug2, ugs away from the
relative equilibrium point of the oscillator-g along z, y and z, respectively. The coordinates are
shown in Figure 1.

Throughout the paper we assume that the complete assemblage is moving freely in space, in
the absence of external forces or torque. It is also assumed that the center of mass of the system
is inertially fixed at the origin, and the deflections of the appendages away from the nominal are
sufficiently small that the center of mass of the system has negligible motion.

We denote the absolute position vector, R, relative to axes &n¢ of an element pdzdydz in the
elastic plate by

R =[u(y, z,t) + 2]&1 + [u(y, 2, ) + y)&2 + [w(y, 2,t) + 2]& (1

where €], €3, €3 are unit vectors along axes z, y, z, respectively. In the same way the absolute posi-
tion of oscillators are given by the vectors:

R = [uql + qu]él + [’U.qz + Tq2]€2 + [qu + Tq3]€3 )

By the above-mentioned definition, the axes zyz rotate with angular velocity & relative to inertial
space O¢pe, 50 we have:

W = w1€] + waey + wsé3 3)

and the vector of cosines of angles formed by axis ¢ with axes zyz can be described as

¥ = 7€l + 282 + 73€3 4)

Assuming that stationary holonomic constraints imposed on the body allow its rotation about the
spatially fixed axis O¢, the equations of motion for such a system can be derived from the Hamilton-
Ostrogradskii principle. Neglecting the damping of the oscillators, the equations of motion of the
system have integrals of energy and areas, and the first integral of equations of motion of the con-
tained liquids as well as the first integral of the Poisson equation. The existence of the first integrals
is very important in using the Chetaev method under consideration.

The first integral of energy:

n 2

3
1 m? G3;
W= 3 ;(—lz—’ + Z Y+ Kg+ Ve + ///V0 Kppdzdydz = constant, (5)

where the domain Vo : —0.5¢ < x < 0.5¢, d < |y| < d+ Ly, —05Ly < z < 0.5L,, and K is
the kinetic energy of the oscillators:
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2
KF%;MQ [%erxﬁcq (6)
and K, is the density function of kinetic energy of the elastic solar array paddle,
2
p == %f + R] )

and V, is equal to the potential energy of the elastic solar array paddle plus the potential energy of
the oscillators, i.e.,

Ec Ec?
Vo = ————— F dydz + ———
e cd =7 //S 1(y, 2)dydz + 5301 =7 /SF2(y,Z)dydz
1 N
+ 3 Z(quugl + quugz + Kq3u§3) = constant, ®)
g=1

where 5 ) )
ov ow 8v Ow ov Ow
nwa=(g) +(5) e a0 (5 +5)

8u\’ u\’ 0%u 0%u ?
F =|— — v—
2(y2) (6y2) + (Bzz) * Y oy? 822 +20-v) <6y62>
and S : d < |y| < d+ L1, and —0.5Ly < z < 0.5Ly. In here the solar arrays are assumed as
a clamped-free-free-free flexible plate whose boundary conditions can be found in Matsuno ez al.
(1996).
The first integral of area:

3

Vo = Z m; + Z Gji + /// < > pdxdydz | ; = constant, 9

i=1

where
my = liw; my = laws m3 = laws

Gt =131 G =10 Gjz =153
The first integral of the Poisson equation:

Va =~ + 72 + 72 — 1 = constant (10

The first integral of the uniform vortex of the contained liquid in the ellipsoidal cavity-j:
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V:;]‘ = Ale?1 + A]'QG§2 + Aj3G;73 = constant (=12, ey V), {an

bici\? aici\ 2 aib;\?
= (%% = (%% o= (%
A (Ijl > A2 ( I > Ass ( I3 ) (12

3. STABILITY ANALYSIS

where

The equations of motion of the system have the particular solution:

me = (0,0, Iw)T

F. = (0,0,1)7

Gie = (0,0,;39,)7  (j=1,2,..,n) (13)
Ugl = U =1Up =0 (¢g=12,..,n)

u = v=w=20_0

describing the uniform rotation of the solid-liquid-elasticity system about the z-axis coinciding with
the fixed ¢ axis, and a relative elliptical rotation around the same axis, where the magnitudes w
and {1; may have arbitrary values. In what follows we shall restrict ourselves precisely to the case
€ < §}; < w, here ¢ is infinitesimally small.
Let us assume that the particular solution (13) is the unperturbed motion and analyze its stability
with respect to variables m;, G, vi, g, u, v, w(i = 1,2,3;5=1,2,...,n;¢ = 1,2, .., N).
Assuming that in the perturbed motion

ms = mgp+ [w
Y3 - 731) + ].
Gjz = Gup+1Qts  (j=12,.,n)

and retaining the previous designations for the rest of variables. It is obvious that in the general case
the equations of the perturbed motion will possess the first integrals (8)-(9).

In order to construct Liapunov’s functions, Chetaev’s method is applied. Let us analyze the
function:

n
V=2Vi+aVe+puVs+ ) AVa; + 6507 (14)

i=1

where a, 1, A;(j = 1,2, ..., n) are constants to be determined, J3 is the moment of inertia of flexible
appendages about the axis O, under the undeformed state.
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Substituting the particular solution (13) into equation (14), the V -functions are reduced to:

2
V (in the equilibrium state) = 6Jsw? + [% + w]

1 o
+ — I3 +
j; 1/Is + XjAj3 [ BT s + X Aj3)

2

[0
+ |p- (I3+J3 Z " T T Age) (15)

Setting the terms inside each of the square brackets in equation (15) to be zero, we can obtain the
constants a, g, A;(j = 1,2,...,n) as follows:

n
(w—05)1js
a=-2w;, p= (I3 + J3)w + ;Ijgﬂj Ww; )\j = —QJ-ZL—JQ—JI)?—J (16)
Through analyzing the V-function (14), it can be changed into the form:
m} ~[ 1 2 ] 2
Vo= potoemmt > L(I_1 + A 4;1)G5 +aGim | + mm
=1t .
m3 ~[ 1 2 ] 2
+ E + amoy2 + Z (Tg— + /\]'AjQ)Gj2 + aGjeye| + K23
j“] L 7 J
m3 [ 1 2 ] 2
+ —I?:— + amzys + Z (I—3 + /\jAjg)Gj3 + Och;;’)’s + K373 a7
j=1t 2 |
- 2
OR . =+ a(., =
+ ///V0 [E—i—wa—E(WYR) pdzdydz
N = 2
OR, . = «af., =
+ q:Zqu ?t_‘-*_ XRq—§<’)’XRq) +F
Here the function F is:
F = (p-r)yi+p—r)ys + Vet 6J3w2
o - - 2
- /// ’yxR pdmdydz—ZM [5(7><Rq)]
WP
k1 = hLHw?+ (18)

t Ijl + /\Jcibg
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k2 = Iw* +ZIz+)\ca

According to the Rayleigh quotient theory the following inequality holds:

V. > // y [AZ(* + w?) + Aju?] pdzdydz + Z My(AZu2, + AZyul, + AZuZ;),  (19)
() q=1

where A; denotes the eigenvalue associated with the vibration ug;, and A, denotes the lowest eigen-
value associated with in-plane vibrations v and w of the thin-plate, and A, denotes the lowest eigen-
value associated with the out-of-plane vibration u of the thin-plate.

By appropriately analyzing, V -function stands for the sum of five quadratic forms except func-

tion F'. Using the energy inequality (19) and the inequality (A B)? < 2(A? + B?), and omitting

terms of the third and higher with respect to the variables 2 S R 5 R 2R, @, Rq, the following in-

LTI
equality can be obtained:

F

v

(/L + 2J3w2 - K] — 2J1w2)’yf + (lt + 2.]30)2 -~ Ko — 2J2w2)'y§
+ / / LA = 3%)u” + (A7 - 3w?)v? + A2w?] pdzdydz
()

N
+ 3 M [(A2Z - 3wl + (A, — 3w)uly + Auls] (20)

+ q/—//vo w? [(u - 2z)% + (v — 2y)?] pdzdydz
N

+ ZW2MQ [(ug = 2r1)” + (ug2 — 2rg2)?] + ...
g=1

Here J;, Jo, J3 are the moments of inertia of the undeformed flexible appendages about O, Oy, O,
axes, respectively, i.e.,

N
J = /// (z2+y2)pdzdydz+Z(T33+7’32)
Vo o
J = /// 2% +z?) pdxdydz+2(rq3+’"ql)
Vo

g=1

N
/// (z? + y*) pdzdydz + Z(rﬁl +12y)
Vo o

Ja
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By using the principles of Liapunov stability theory with respect to a part of the variables:

OR o
nj, Y, Gji, /// [Ft_ +LD‘><R—%(")7XQ):I - €5 pdadydz,
Vo
0R, . 5 1
M, [7+waq—§(’yxR } // Vo(u—2xpd:vdydz

/// (v — 2y)pdzdydz, /// wpdzrdydz, M,(uq — 2ry),
Vo VO

My(uga — 2rp), Maugs (5 =1,2,3;g=1,2,...,N)
the sufficient conditions of stability of the particular solution (13) are the following inequalities:

p+2J30% — Ky — 221w >0
b+ 2J3w? — kg — 2J5w? > 0 2D

Ap > V3w, Ay > V3w
Ap > V3w, Ap > V3w (22)

Note that (21) and (22) are similar to the stability criteria of the rigid body with multi-liquid-
filled cavities:

p—k1>0; p—Ky >0, (23)

therefore, it is concluded that the self-spinning stability criteria of the rigid body with multi-liquid-
filled cavities are the extension of the self-spinning stability criteria of the rigid body with single-
liquid-filled cavities (Rumiantsev 1995, Kuang 1992,1994). The equations (23) and (24) state that
the angular frequency of the body should not exceed the characteristic oscillating frequencies of the
flexible appendages, i.e.:

1

\/— p,\/— qla\/— q2} (24)

w< mm{\/_Ab,

4. CONCLUSIONS

This paper presents a Liapunov stability theory applicable to dynamical systems characterized
by simultaneous discrete and distributed parameters. The Chetaev’s effective method is introduced
to investigate the stability criteria of the perturbed motion. By invoking the constants of the first
integrals of the researched system and making use of certain properties of Rayleigh’s quotient with
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respect to the oscillation theory of flexible appendages, the appropriate quadratic forms in V-function
with respect to the perturbed attitude components are constructed under certain circumstances. The
constructed quadratic forms can be used in conjunction with the newly formulated stability theory
about a part of the variables to predict the self-spinning stability of the multi-liquid-filled rigid body
with multi-elastic appendages.

The results worked out here using Chetaev’s method can also be obtained by means of “Energy-
Casimir” method developed by Arnold (1978), Marsden (1992), Aeyels (1992), and et al. In order
to establish rigorous nonlinear stability criteria using “Energy-Casimir” method, certain convexity
estimates must be carried out. Chetaev method is easier to understand and master than the “Energy-
Casimir” method.
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