• Title/Summary/Keyword: rigid boundary

Search Result 302, Processing Time 0.027 seconds

Determination of thermal Stress Intensity Factors for General Cusp-Crack Shaped Rigid Inclusion (일반 형상의 커프스형 강체균열에 대한 열응력세기계수 결정)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1216-1220
    • /
    • 1992
  • In case that a general cusp-crack shaped inclusion expressed in a polynominal form of conformal mapping function exists in a two dimensional elastic body under uniform heat flow, the complex potential and thermal stress intensity factors are derived. Two thermal boundary conditions are considered, one an insulated rigid inclusion and the other a rigid inclusion with fixed boundary temperature. The previous solutions of the thermal stress intensity factors for symmetrical airfoil and lip type rigid inclusions are obtained from the general solution of the thermal stress intensity factors.

Torsional wave in an inhomogeneous prestressed elastic layer overlying an inhomogeneous elastic half-space under the effect of rigid boundary

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.753-766
    • /
    • 2015
  • An investigation has been carried out for the propagation of torsional surface waves in an inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional) and rigidity are taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may be useful to understand the nature of seismic wave propagation in geophysical applications.

Dynamic Analysis of 3-D Rigid Foundations by Boundary Elements (강성기초의 3차원 동적 경계요소해석)

  • Lee, Chan Woo;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.53-65
    • /
    • 1993
  • In this work the dynamic response of 3-D arbitrarily shaped rigid massless foundation is numerically obtained using boundary element under non-relaxed boundary condition. The problem is formulated in time domain by the boundary element method. The fundamental solutions used in this work are the Stokes solutions of the three dimensional elastodynamics. This method has advantages over frequency domain techniques in that it provides in a natural and direct way the time history of the response and forms the basis for elct:ension to nonlinear problems. This work is verified and can be used for practical purpose.

  • PDF

Study on Precision Cold Forging of helical Gear (헬리컬 기어의 정밀 냉간 단조에 대한 연구)

  • 박용복;양동열
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.384-392
    • /
    • 1999
  • In metal forming, there are problems with recurrent geometric characteristics without explicitly prescibed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. the elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products, the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed, and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

Development of the Direct Boundary Element Method for Thin Bodies with General bBundary Conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.975-984
    • /
    • 1997
  • A direct boundary element method (DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adoped simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absoring material.

  • PDF

3D Transmitting Boundary for Water-Saturated Transversely Isotropic Soil Strata Based on the u-w Formulation (u-w 정식화에 근거한 지하수로 포화된 가로등방성 층상지반에서의 3차원 전달경계)

  • Lee, Jin-Ho;Kim, Jae-Kwan;Ryu, Jeong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.67-86
    • /
    • 2009
  • In this study, a 3D transmitting boundary in water-saturated transversely isotropic soil strata has been developed based on u-w formulation for application to general 3D analysis. Behavior in the far field region is expanded in the Fourier series, and dynamic stiffness for each term is obtained based on the u-w formulation. Transformation of the dynamic stiffness is presented to combine the transmitting boundary with the 3D finite elements for the near field region formulated in a 3D Cartesian coordinate system. The developed transmitting boundary is verified through a comparison of the dynamic behavior of a rigid circular foundation with the results from the existing numerical method. In addition, the developed transmitting boundary is applied to the analysis of the dynamic behavior of rigid foundations of diverse shapes, and the effects of the level of the groundwater table on the dynamic stiffness of a rigid rectangular foundation in the water-saturated transversely isotropic layered stratum are studied.

The Study for an Impulsive Spin-Up Flow in a Shallow Rectangular Container (얕은 사각용기에서의 순간 회전가속 유동에 관한 연구)

  • Im, Gwang-Ok;Gwon, Tae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.339-346
    • /
    • 2001
  • The impulsive spin-up flow in a shallow rectangular container is analyzed numerically by quasi 3-D unsteady laminar flow. In the non-inertia coordinates, the flow is generated by the virtual forces as Coriolis force, etc.. After the boundary layers grow up near sidewalls, primary vortexes separate from the sidewalls. As the Reynolds number increases, the subsidiary vortexes take place in the boundary layer. The rigid body rotation is started from the inner region and propagated to the outer region, finally all the fluid reaches the rigid body rotation. According to the Reynolds number and the aspect ratio, the development of vortex pattern is symmetric or asymmetric.

Analysis of Velocity Potential around Pulsating Bubble near Free or Rigid Surfaces Based on Image Method (이미지 방법을 이용한 자유 및 강체 표면 옆의 맥동하는 버블 주위 속도 포텐셜 해석)

  • Lee, Sangryun;Choi, Gulgi;Kim, Jongchul;Ryu, Seunghwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • An analytical method for predicting the velocity potential around a pulsating bubble close to a free or rigid wall was established using an image method. Because the velocity potential should satisfy two boundary conditions at the bubble surface and rigid wall, we investigated the velocity in the normal direction at the two boundaries by adding the image bubbles. The potential was analyzed by decomposing the bubble motion as two independent motions, pulsation and translation, and we found that when the number of image bubbles was greater than ten, the two boundary conditions were satisfied for the translation term. By adding many image bubbles after the approximation of the pulsation term, we also confirmed that the boundary condition at the wall was satisfied.

복소 유사 응력 함수에 의한 타원 강체 함유물을 내포하는 글잎 재료의 응력 해석

  • 김종성;이강용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.740-743
    • /
    • 1995
  • The analysis model is the power law creep material containing an elliptical rigid inclusion subjected to the arbitrarily directional stress on infinite boundary. The stress analysis is performed using the conformal mapping function and complex pseudo-stress function. The stress distributions near an elliptical rigid inclusion are obtained with various ellipse shapes, strain hardening exponents and directions of applied stress.

  • PDF

Crack Analysis of Creep Material Containing Rigid Inclusion with Line Crack Shape (직선 균열 강체 함유물을 내포하는 크?재료의 균열 해석)

  • 이강용;김종성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.91-97
    • /
    • 1998
  • The analysis model is the infinite body consisted of power law creep material containing a rigid inclusion with line crack shape subjected to the arbitrarily directional stress on an infinite boundary. The crack analysis is performed using the complex pseudo-stress function. The strain rate intensity factor is determined in the closed form as new fracture mechanics parmeter which represents the magnitudes of stress and strain rate near the tip in power law creep material.

  • PDF