• Title/Summary/Keyword: rheological analysis

Search Result 349, Processing Time 0.022 seconds

Effect of Carbon Dioxide Adsorption on LDPE/Zeolite 4A Composite Film

  • Jung, Bich Nam;Shim, Jin Kie;Hwang, Sung Wook
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.149-157
    • /
    • 2018
  • Low density polyethylene (LDPE) has been researched in many industrial applications, and LDPE/zeolite 4A composites has been extensively studied for many applications such as microporous, breathable film and so on. LDPE/zeolite composite have a great potential for carbon dioxide adsorption film due to its high adsorption ability. In this study, LDPE/zeolite 4A composites with various contents were prepared by melt mixing process, and co-extrusion process was applied to develop a $CO_2$ adsorption conventional film and foamed film. The thermal, rheological, mechanical, physical and morphological properties of composite films has been characterized, and $CO_2$ adsorption of the composite films evaluated by thermogravimetric analysis (TGA) and the performance was found to be about 18 cc/g at 30.9 wt% of the zeolite content.

Monitoring for Rheological Properties of Black Jam Produced by Black Ginseng and Black Garlic (흑삼 및 흑마늘을 이용한 블랙잼 유동특성 모니터링)

  • Lee, Gee-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-191
    • /
    • 2020
  • This study monitored the rheological properties of jams manufactured using the black ginseng and black garlic. The conditions for mixing black jam were black ginseng (X1, 30-54 g), black garlic (X2, 75-135 g), pectin 4.5 g, apple paste 270 g, and fructo-oligosaccharide 360 g. The response surface analysis was performed with springiness, cohesiveness, chewiness, brittleness and gumminess. The R2s of the regression equation for springiness, cohesiveness, chewiness, brittleness and gumminess were recognized at a significant level of 5 to 10 %, with 0.8948, 0.9103, 0.9032, 0.9097, and 0.8561, respectively. The combination conditions of black ginseng and black garlic with the highest springiness of black jam were found to be 194.39% (springiness) with black ginseng 54.00 g and black garlic 105.83 g, while the conditions of black ginseng and black garlic mixing with the lowest springiness were found to be 164.11% with black ginseng 31.48 g and black garlic 119.43 g. The mixing conditions of black ginseng and black garlic with the highest cohesiveness of black jam and its consistency were 40.96% (cohesiveness) with black ginseng 48.85 g and black garlic 129.62 g, while black ginseng and black garlic combination conditions with the lowest cohesiveness were found to be 32.96% with black ginseng 50.06 g and black garlic 82.77 g. Black ginseng and black garlic mixing conditions, which have the highest chewiness of black jam, was 43.19 g (chewiness) from black ginseng 42.95 g and black garlic 106.83 g. Black ginseng and black garlic mixing conditions and their brittleness were found to be the highest in black ginseng 32.10 g and black garlic 88.04 g to 16,874 g. Black ginseng and black garlic mixing conditions and their brittleness were found to be 678 g from black ginseng 50.53 g and black garlic 83.91 g. Black ginseng and black garlic mixing conditions and their gumminess were 14.06 g with black ginseng content of 32.91 g and black garlic content of 124.60 g. By examining the relationship between black ginseng/black garlic ratio and the rheological property of black jam from above results, it is believed that black jam can be produced for anyone to enjoy using health function material.

Physical and Chemical Properties of Waste LCD Glass as Raw Materials for the Production of Foamglass (발포유리 제조원료로서 폐 LCD유리의 물리화학적 특성)

  • Lee, Chul-Tae;Lee, Jinsoo;Jang, Moonho;Lee, Sunyoung
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.266-272
    • /
    • 2009
  • Physical and chemical properties of waste LCD glass were investigated to test the feasibility of feed materials for the production of foamed glass. For this study, chemical analysis, thermal analysis, rheological consideration with the viscosity change under high temperature and thermal expansion coefficient were carried out and the trial production of foamed glass as; in spherical and block type also attempted. All results showed waste LCD glass would be a good feed material for the production of foamed glass and foaming technology of LCD glass would be an effective recycling alternative.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

A comparative analysis of sheeting die geometries using numerical simulations

  • Igali, Dastan;Wei, Dongming;Zhang, Dichuan;Perveen, Asma
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.111-125
    • /
    • 2020
  • The flow behavior of polymer melts within a slit die is an important consideration when designing a die geometry. The quality of the extruded polymer product can be determined through an evaluation of the flow homogeneity, wall shear rate and pressure drop across the central height of the die. However, mathematical formulations cannot fully determine the behavior of the flow due to the complex nature of fluid dynamics and the nonlinear physical properties of the polymer melts. This paper examines two slit die geometries in terms of outlet velocity uniformity, shear rate uniformity at the walls and pressure drop by using the licensed computational fluid dynamics package, Ansys POLYFLOW, based on the finite element method. The Carreau-Yasuda viscosity model was used for the rheological properties of the polypropylene. Comparative analysis of the simulation results will conclude that the modified die design performs better in all three aspects providing uniform exit velocity, uniform wall shear rates, and lower pressure drop.

Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model

  • Shirgir, Sina;Azar, Bahman Farahmand;Hadidi, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.493-506
    • /
    • 2020
  • In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

Effect of Addition of Dietary Fibers on Quality of Backsulgies (식이섬유 첨가에 의한 백설기의 특성변화에 관한 연구)

  • Choi, In-Ja;Kim, Young-A
    • Korean journal of food and cookery science
    • /
    • v.8 no.3
    • /
    • pp.281-289
    • /
    • 1992
  • The physicochemical, rheological and sensory characteristics of Backsulgies added with dietary fibers-cellulose, pectin and wheat bran-were investigated. The maximum acceptable ratio of fibers was 10% for wheat bran or cellulose, 3% for pectin. As me results of physicochemical analysis, cellulose and pectin had larger water-binding capacity man wheat bran. Swelling power was increased with temperature increment. But the type of added dietary fiber did not make significant differences. The degree of gelatinization was measured by maltose content. The retrogradation of backsulgies was significantly delayed by the addition of dietary fibers. The retardation effect of dietary fibers for retrogradation of backsulgies was also proved by textural analysis and time constant determination of Avrami equation. Pectin had especially excellent delaying effect while me storage time extended. There were no significant differences in sensory characteristics between me backsulgi with no dietary fibers and backsulgies added with cellulose 3%, pectin 1% and wheat bran 3%. Therefore, we concluded mat cellulose 3%, pectin 1% and wheat bran 3% were me optimum addition ratios, which have the delaying effect of retrogradation, and which could be accepted as same as conventional backsulgies organoreptically.

  • PDF

A Theoretical Study for the Filling Balance of the Family Mold Using Variable-Runner System (가변 러너 시스템을 이용한 패밀리 금형의 충전밸런스에 관한 이론적 연구)

  • Choi, Kwon-Il;Park, Hyung-Pil;Cha, Baeg-Soon;Rhee, Byung-Ohk;Koo, Bon-Heung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.275-278
    • /
    • 2007
  • In family mold, defects are frequently occurred by an excessive packing the smaller volume cavity during molding. Although runner size could be optimized by CAE analysis or experimental data, the filling imbalance is hardly avoided in the actual injection molding process by various means. Before this study, we developed a variable-runner system for balancing the cavity-filling for three resins (ABS, LDPE, and PA66) in the family-mold, and examined the effect of cross-sectional area reduction of a runner in the system. In this study, we examined the conditions of the pressure and temperature in the system with a CAE analysis. We also analyzed the influence of the rheological characteristic of resins to the balancing-capability of the system in order to help mold designers easily adopt the variable-runner system to their design.

  • PDF

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.