• Title/Summary/Keyword: rf-electrode

Search Result 418, Processing Time 0.035 seconds

Electrical Characteristics of PZT Thin film Deposited by Rf-magnetron Sputtering as Pb Excess Content of Target (Rf-sputtering법으로 증착한 PZT박막의 타겟의 Pb 함량에 따른 전기적 특성에 관한 연구)

  • Lee, Kyu-Il;Kang, Hyun-Il;Park, Young;Park, Ki-Yub;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.186-189
    • /
    • 2003
  • The role of excess Pb about the crystallization behavior and electrical properties in b(Zr$\sub$0.52/Ti$\sub$0.48/)O3(PZT) thin films has not been precisely defined. In this work, the effect of excess Pb content on the ferroelectric properties of these films was investigated. To analyze the effect, PZT films containing various amounts of excess Pb were Prepared. PZT thin films were deposited on the Pt/Ti bottom electrode by rf magnetron sputtering method and then they were crystallized by rapid thermal annealing (RTA). The experiment showed that all PZT films indicated perovskite polycrystalline structure with preferred orientation (111) and no pyrochlore phase was observed. As higher excess Pb was included, the films showed that value of leakage current shift from 2.03${\times}$10$\^$-6/ to 6.63 ${\times}$ 10$\^$-8/A/cm$^2$ at 100kV/cm, and value of remanent polarization shift from 8.587 ${\mu}$C /cm$^2$ to 4.256 ${\mu}$C/ cm$^2$. Electrical properties of PZT thin film affected by Pb excess content of target were explained to be caused of defect among space charges and defect grain boundaries.

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

Effect of Deposition Temperature on Structural and Electrical Properties of Ga-Doped ZnO for Transparent Electrode of Thin Film Solar Cells (박막 태양전지용 투명 전극을 위한 Ga 도핑된 ZnO의 증착 온도에 따른 구조 및 전기 특성 변화)

  • Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.144-148
    • /
    • 2011
  • We have investigated the structural and optical properties of Ga-doped ZnO (GZO) thin films deposited by RF magnetron sputtering at various deposition temperatures from 100 to $500^{\circ}C$. All the GZO thin films are grown as a hexagonal wurtzite phase with highly c-axis preferred parameter. The structural and electrical properties are strongly related to deposition temperature. The grain size increases with the increasing deposition temperature up to $400^{\circ}C$ and then decreases at $500^{\circ}C$. The dependence of grain size on the deposition temperature results from the variation of thermal activation energy. The resistivity of GZO thin film decreases with the increasing deposition temperature up to $300^{\circ}C$ and then decreases up to $500^{\circ}C$. GZO thin film shows the lowest resistivity of $4.3{\times}10^{-4}\;{\Omega}cm$ and highest electron concentration of $1.0{\times}10^{21}\;cm^{-3}$ at $300^{\circ}C$. The mobility of GZO thin films increases with the increasing deposition temperature up to $400^{\circ}C$ and then decreases at $500^{\circ}C$. GZO thin film shows the highest resistivity of 14.1 $cm^2/Vs$. The transmittance of GZO thin films in the visible range is above 87% at all the deposition temperatures. GZO is a feasible transparent electrode for the application to the transparent electrode of thin film solar cells.

Deposition $Ba_{1-x}Sr_xTiO_3$Thin Films and Electrical Properties with Various Materials Top Electrodes (강유전체$Ba_{1-x}Sr_xTiO_3$ 박막의 제조 및 상부전극재료에 따른 전기적 특성)

  • Park, Choon-Bae;Kim, Deok-Kyu;Jeon, Jang-Bae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.410-415
    • /
    • 1999
  • $Ba_{1-x}Sr_xTiO_3$ thin films with various ratio of Sr (X = 0.4, 0.5, 0.6) were grown $Pt/TiN/SiO_2/Si$ subastrate by RF magnetron sputtering deposition. As, Ag, and Cu films were deposited on $Ba_{1-x}Sr_xTiO_3$ thin films as top electrodes by using a thermal evaporator. The electrical properties of $Ba_{1-x}Sr_xTiO_3$ thin films for various compositions were characterized and the physical properties at interface between $Ba_{1-x}Sr_xTiO_3$ thin films and top electrodes were evaluated in terms of the work function difference. At x =0.5, the degradation of capacitance is lower to the other compositions. As negative biasapplied, the specimen with Cu top electrode has board saturation region and low leakage current since work function of Cu is bigger than other electrodes.$ Ba_{0.5}Sr_{0.5}TiO_3$ thin films with Cu top electrode, the dielectric constant was measured to the value of 354 at 1 kHz and the leakage current was obtained to the value of $5.26\times10^{-6}A/cm2$ at the forward bias of 2 V.

  • PDF

High Transparent, High Mobility MoO3 Intergraded InZnO Films for Use as a Transparent Anode in Organic Solar cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.343-343
    • /
    • 2014
  • We reported on the electrical, optical, structural and morphological properties fabricated by co-sputtering for use as an anode for organic solar cells (OSCs). By adjusting RF and DC power of $MoO_3$ and IZO targets during co-sputtering, we fabricated the $MoO_3$-IZO electrode with graded content of the $MoO_3$ on the IZO films. At optimized $MoO_3$ thickness of 20 nm, the $MoO_3$ graded IZO electrode showed a higher mobility ($33cm^2/V-Sec$) than directly deposited $MoO_3$ on IZO film ($26cm^2/V-Sec$). At visible range (400nm~800nm), optical transmittance of the $MoO_3$ graded IZO electrode is higher than that of directly deposited $MoO_3$ on IZO film. High mobility of $MoO_3$ graded on IZO is attributed to less interface scattering between $MoO_3$ and IZO. To investigate the feasibility of $MoO_3$ graded IZO films, we fabricated conventional P3HT:PCBM based OSCs with $MoO_3$ graded IZO as a function of MoO3 thickness. The OSC fabricated on the $MoO_3$ graded IZO anode showed a fill factor of 66.53%, a short circuit current of $8.121mA/cm^2$, an open circuit voltage of 0.592 V, and a power conversion efficiency of 3.2% comparable to OSC fabricated on ITO anode and higher than directly deposited $MoO_3$ on IZO film. We suggested possible mechanism to explain the high performance of OSCs with a $MoO_3$ graded IZO.

  • PDF

Effect of MoO3 Thickness on the Electrical, Optical, and structural Properties of MoO3 Graded ITO Anodes for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Kim, Seok-Soon;Chung, Kwun-Bum;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.478.1-478.1
    • /
    • 2014
  • We investigated $MoO_3$ graded ITO electrodes for organic solar cells (OSCs) without PEDOT:PSS buffer layer. The effect of $MoO_3$ thickness on the electrical, optical, and structural properties of $MoO_3$ graded ITO anodes prepared by RF/DC magnetron co-sputtering system using $MoO_3$ and ITO targets was investigated. At optimized conditions, we obtained $MoO_3$ graded ITO electrodes with a low sheet resistance of 13 Ohm/square, a high optical transmittance of 83% and a work function of 4.92 eV, comparable to conventional ITO films. Due to the existence of $MoO_3$ on the ITO electrodes, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer successfully operated. Although OSCs fabricated on ITO anode without buffer layer showed a low power conversion efficiency of 1.249%, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer showed a outstanding cell performance of 2.545%. OSCs fabricated on the $MoO_3$ graded ITO electrodes exhibited a fill factor of 61.275%, a short circuit current of 7.439 mA/cm2, an open circuit voltage of 0.554 V, and a power conversion efficiency of 2.545%. Therefore, $MoO_3$ graded ITO electrodes can be considered a promising transparent electrode for cost efficient and reliable OSCs because it could eliminate the use of acidic PEDOT:PSS buffer layer.

  • PDF

Crystal Structure and Dielectric Responses of Pulsed Laser Deposited (Ba, Sr)$TiO_3$ Thin Films with Perovskite $LaNiO_3$ Metallic Oxide Electrode

  • Lee, Su-Jae;Kang, Kwang-Yong;Jung, Sang-Don;Kim, Jin-Woo;Han, Seok-Kil
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.258-261
    • /
    • 2000
  • Highly (h00)-oriented (Ba, Sr)TiO$_3$(BST) thin films were grown by pulsed laser deposition on the perovskite LaNiO$_3$(LNO) metallic oxide layer as a bottom electrode. The LNO films were deposited on SiO$_2$/Si substrates by rf-magnetron sputtering method. The crystalline phases of the BST film were characterized by x-ray $\theta$-2$\theta$, $\omega$-rocking curve and $\psi$-scan diffraction measurements. The surface microsturcture observed by scanning electron microscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxation at the low frequency region. The origin of these low-frequency dielectric relaxation are attributed to the ionized space charge carriers such as the oxygen vacancies and defects in BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We studied also on the capacitance-voltage characteristics of BST films.

  • PDF

A Study on the Characteristic of MOS structure using $HfO_{2}$ as high-k gate dielectric film ($HfO_{2}$를 이용한 MOS 구조의 제작 및 특성)

  • Park, C.I.;Youm, M.S.;Park, J.W.;Kim, J.W.;Sung, M.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • We investigated structural and electrical properties of Metal-Oxide-Semiconductor(MOS) structure using Hafnium $oxide(HfO_{2})$ as high-k gate dielectric material. $HfO_{2}$ films are ultrathin gate dielectric material witch have a thickness less than 2.0nm, so it is spotlighted to be substituted $SiO_{2}$ as gate dielectric material. In this paper We have grown $HfO_{2}$ films with pt electrode on P-type Silicon substrate by RF magnetron sputtering system using $HfO_{2}$ target and oserved the property of semiconductor-oxide interface. Using pt electrode, it is necessary to be annealed at ${300^{\circ}C}$. This process is to increase an adhesion ratio between $HfO_{2}$ films with pt electrode. In film deposition process, the deposition time of $HfO_{2}$ films is an important parameter. Structura1 properties are invetigated by AES depth profile, and electrical properties by Capacitance-Voltage characteristic. Interface trap density are measured to observe the interface between $HfO_{2}$ with Si using High-frequency(1MHz) C-V and Quasi - static C-V characteristic.

  • PDF

The Characteristics of Ti-O Buffer Layered Ta/Ta2O5Capacitors on the Al2O3 substrate (Al2O3 기판위에 형성된 Ti-O 완충층을 가진 Ta/Ta2O5커패시티의 특성)

  • 김현주;송재성;김인성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.807-811
    • /
    • 2003
  • We investigated the electrical characterisitics of T $a_2$ $O_{5}$ (tantalum pentoxide) film and Ti-O/T $a_2$ $O_{5}$ film deposited on $Al_2$ $O_3$based substrate. Ta (tantalum) electrode and $Al_2$ $O_3$ substrate was used for the purpose of simplifying the manufacturing process in IPD's (integrated passive devices). Dielectric materials (T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ films) deposited on Ta/Ti/A $l_2$ $O_3$ were annealed at 700 $^{\circ}C$ for 60 sec. in vacuum. The XRD results showed that as-deposited T $a_2$ $O_{5}$ film possessed amorphous structure, which was transformed to crystallines by rapid thermal heat treatment. We compared the lnJ- $E^{{\frac}{1}{2}}$, C-V, C-F of both as-deposited and annealed dielectric thin films deposited on Ta bottom electrode. From this results, we concluded that the leakage current could be reduced by introducing Ti-O buffer layer and conduction mechanisms of T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ could be interpreted appropriately by Schottky emission effect.

Thermal Distribution in a Phantom Using 8MHz RF Capacitive Type Hyperthermia (8 MHz 고주파 유전형 가열장치로 가열한 모형에서의 열분포)

  • Lee Jong Young;Park Kyung Ran;Kim Kye Jun;Sung Ki Joon
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.171-176
    • /
    • 1991
  • To evaluate the temperature distribution according to the size of the electorde and the thickness of the phantom using 8MHz radiofrequency capacitive heating device, various sized electrodes and phantoms were used in combination. The radii of the electrodes are 10, 15, 20, 25, and 30 cm and the thickness of cylindrical phantoms with diameter 30 cm were 10, 15, 20, 25, 30, and 35 cm. When the thickness of the phantom was 25 cm or 30 cm, homogenous heating was achieved by using the electrode which diameter was equal to or greater than the thickness of the phantom. When the thickness of the phantom was 20 cm or less. homogenous heating was not achieved by using the electrode which diameter was equal to the thickness of the phantom, but achieved by the larger diameter of the electorode. When the sizes of paired electrodes were not equal, the smaller electrode side was preferentially heated.

  • PDF