• Title/Summary/Keyword: reversed hazard rate

Search Result 4, Processing Time 0.018 seconds

Multivariate Mean Inactivity Time Functions with Reliability Applications

  • Kayid, M.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.127-140
    • /
    • 2006
  • AIn this paper we introduce and study a multivariate notions of mean inactivity time (MIT) functions. Basic properties of these functions are derived and their relationship to the multivariate conditional reversed hazard rate functions is studied. A partial ordering, called MIT ordering, of non-negative random vectors is introduced and its basic properties are presented. Its relationship to reversed hazard rate ordering is pointed out. Finally, using the MIT ordering, a bivariate and multivariate notions of IMIT (increasing mean inactivity time) class is introduced and studied.

  • PDF

Analyzing Survival Data by Proportional Reversed Hazard Model

  • Gupta, Ramesh C.;Wu, Han
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.1-26
    • /
    • 2001
  • The purpose of this paper is to introduce a proportional reversed hazard rate model, in contrast to the celebrated proportional hazard model, and study some of its structural properties. Some criteria of ageing are presented and the inheritance of the ageing notions (of the base line distribution) by the proposed model are studied. Two important data sets are analyzed: one uncensored and the other having some censored observations. In both cases, the confidence bands for the failure rate and survival function are investigated. In one case the failure rate is bathtub shaped and in the other it is upside bath tub shaped and thus the failure rates are non-monotonic even though the baseline failure rate is monotonic. In addition, the estimates of the turning points of the failure rates are provided.

  • PDF

A new model based on Lomax distribution

  • Alshingiti, Arwa M.;Kayid, M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.65-76
    • /
    • 2014
  • In this article, a new model based on Lomax distribution is introduced. This new model is both useful and practical in areas such as economic, reliability and life testing. Some statistical properties of this model are presented including moments, hazard rate, reversed hazard rate, mean residual life and mean inactivity time functions, among others. It is also shown that the distributions of the new model are ordered with respect to the strongest likelihood ratio ordering. The method of moment and maximum likelihood estimation are used to estimates the unknown parameters. Simulation is utilized to calculate the unknown shape parameter and to study its properties. Finally, to illustrate the concepts, the appropriateness of the new model for real data sets are included.

  • PDF

Length-biased Rayleigh distribution: reliability analysis, estimation of the parameter, and applications

  • Kayid, M.;Alshingiti, Arwa M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.27-39
    • /
    • 2013
  • In this article, a new model based on the Rayleigh distribution is introduced. This model is useful and practical in physics, reliability, and life testing. The statistical and reliability properties of this model are presented, including moments, the hazard rate, the reversed hazard rate, and mean residual life functions, among others. In addition, it is shown that the distributions of the new model are ordered regarding the strongest likelihood ratio ordering. Four estimating methods, namely, method of moment, maximum likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used to estimate the parameters of this model. Simulation is used to calculate the estimates and to study their properties. Finally, the appropriateness of this model for real data sets is shown by using the chi-square goodness of fit test and the Kolmogorov-Smirnov statistic.

  • PDF