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Abstract. Aln this paper we introduce and study a multivariate notions
of mean inactivity time (MIT) functions. Basic properties of these func-
tions are derived and their relationship to the multivariate conditional
reversed hazard rate functions is studied. A partial ordering, called MIT
ordering, of non-negative random vectors is introduced and its basic
properties are presented. Its relationship to reversed hazard rate order-
ing is pointed out. Finally, using the MIT ordering, a bivariate and
multivariate notions of IMIT (increasing mean inactivity time) class is
introduced and studied.

Key Words : Mean inactivity time, reversed hazard rate order, stochas-
tic order, bivariate life classes, DRHR, IMIT

1. INTRODUCTION

In reliability theory, the concept of inactivity time is extensively used in
modeling lifetime data and defining various life classes. In this paper, we provide
some new results involving the mean inactivity time function (MIT) in a univariate
case and introduce a multivariate notion of it in the context of multivariate reliability
theory. Before we go into the details, let us quickly review some common notions
of univariate stochastic orderings that will be considered in this paper (see Shaked
and Shanthikumar (1994) for an exhaustive monograph on this topic). We shall
denote the distribution function, the survival function and the reversed hazard rate
function of a univariate random variable T by Fr, Fr and Ag,, respectively. We
use a similar notation for all other random variables.
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A random variable T is said to be stochastically smaller than another random
variable S (denoted by T' <g7 S ) if Fr(t) < Fs(t) for all t.

A stronger notion of stochastic dominance is that of reversed hazard rate order-
ing: T is said to be smaller than S in reversed hazard rate ordering (denoted by
T <ggr S) if, and only, if

Fr(t)/Fs(t) is non — increasing in t. (1.1)
In the continuous case, another condition equivalent to (1.1) is
Arp(t) < )\Fs(t), forallt>0. (1.2)

For any random variable T, let T; = [T'—¢|T > t] denote a random variable whose
distribution is the same as the conditional distribution of T — ¢ given that T > t.
When T is the lifetime of a device, T; can be regarded as the residual lifetime of the
device at time ¢, given that the device has survived up to time ¢ (see, Ahmad, Kayid
and Li (2005)). Another ordering which relates the residual lifetimes is the mean
residual life order: T is said to be smaller than S in mean residual order (denoted
by T <mrr S) if, and only, if (Alzaid, 1988)

[ Fr(z)ds < e Fg(z)

dx
o) S TFs) for all t > 0. (1.3)

On the other hand, in many reliability problems it is of interest to consider
variables of the kind Tjyy = [t — T | T < t], for fixed ¢ > 0, having distribution
function Fy)(s) = P[t =T < s | T < t], and known in literature as inactivity time
(Chandra and Roy (2001), Li and Lu (2003), Kayid and Ahmad (2004), Ahmad,
Kayid and Pellerey (2005), Ahmad and Kayid (2005), Li and Xu (2006) and Ahmad,
Hu and Kayid (2006)).

The MIT function of T is defined by

(1.4)

@ Bt-TIT <, t>o,
=19 o, otherwise.

In the current investigation, we further develop the mean inactivity time (MIT)
functions. The construction of this paper is as follows: First, in Section 2, we review
some basic properties concerning of the MIT functions in the univariate setting and
introduce some new results. In Section 3, we give the formal definition of the bivari-
ate and multivariate version of the MIT functions and introduce a partial ordering
(called the MIT ordering) of vectors of random inactivity time. In that section, us-
ing the MIT ordering, a bivariate and multivariate notion of IMIT (increasing mean
inactivity time) is introduced and studied. Finally, in Section 4 we provide some
applications in reliability theory.
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2. UNIVARIATE MIT FUNCTIONS

First, we summarize the relationships between the distribution function,
reversed hazard rate function and the mean inactivity time function. Its well-known
fact that each of the function F', A and p uniquely determines the other two. Some
of the relationships, which can be easily verified, are listed below:

(a) Relationship between A and p:

M) = (‘j;)(t’, W= (5w), (2.1)

(t)—/ exp{ /ut)\ dy}du (2.2)

(b) Relationship between F and pu:

ue = [0, (23)
F(t) = exp {— /t i (u)(“) } : (2.4)

= lm M ex : L U or a
F(t) = Jim 25 { /t ok } , forallt>0.  (25)

As u(0) = 0, the corresponding MIT for ¢ — 0 should be equal to 0. The MIT
function defines a distribution function, if

1. p(0) =0; pu(z) >0,z >0,
2. p(z) <1,
5 (1 ) /8w du = oo

N R ((1 — ul(u)) /p.(u)) du < oo, forallt > 0.

w

B

So far we have considered only one random variable T with MIT function u. Con-
sider another random variable S with an absolutely continuous distribution function
Fs and MIT function 8. The random variable T is said to be smaller than S in the
MIT ordering (denoted by T <prrr S) if, and only, if

t Fr(z)dzx t Fs(z)dx

p(t) = o TFr) > o TEel) = B(t), for all t > 0. (2.6)
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This ordering was recently introduced and studied by Nanda et al. (2003),
Kayid and Ahmad (2004), Ahmad and Kayid (2005), Ahmad, Kayid and Pellerey.
(2005). See further work by Li and Xu (2006). From the definition of <psrr order
it could be thought that the results one can obtain on the MIT order follow directly
from the results on the <pspy order and the fact that X <pr Y if, and only, if
—X >mrr —Y. However, this is not generally true since this property can not be
useful when one assumes non-negativity of X and Y, which is assumed for most of
the known results on <psgry order. Such equivalence can be applied only in the case
X and Y have a common finality bounded support [0,1], I € R*, since in that case
we can write it as X <pr Y if, and only, if ] — X >ppp 1 =Y. But it is our
intention, in this paper, to consider also the case of unbounded supports (that are
more common in real applicative problems).

On the other hand, many non-parametric classes of distributions have been de-
fined in literature to describe reliability properties of random lifetimes. Related to
<gt order and <7 order, two classes of life distributions have been introduced
and studied in the literature. These are the decreasing reversed hazard rate (DRHR)
and increasing mean inactivity time (IMIT) classes of life distributions (cf. Block
et al. (1998), Nanda et al. (2003), Kayid and Ahmad (2004), Ahmad and Kayid
(2005) and Li and Xu (2006)). Their definitions are also recalled here.

Definition 2.1.
A non-negative random variable 7' is said to be:

(¢) decreasing reversed hazard rate (denoted by T' € DRH R) if, and only, if Ty <sr
Ty, for all 0 < s < ¢,

(4¢) increasing mean inactivity time (denoted by T' € IMIT) if, and only, if [T{;)] is
increasing in t > 0.

A wide range of distributions happen to be DRHR. These include two-parameter
Weibull, gamma, Makeham, Pareto, log-normal and linear failure rate distributions.
In addition, the linear failure rate and the Makeham distributions are also included
in the IMIT class. The following implications among some of the above mentioned
orders and non-parametric classes are well known (see Nanda et al. (2003) and
Kayid and Ahmad (2004)):

T <grur S = T <mir S, (2.7)

and DRHR C IMIT.

Next, we give some new results related the MIT order in univariate case. To
state and prove Theorem 2.1 below, we need the following result which is due to Lt
and Xu (2006).

Lemma 2.1.

Assume that ¢ is strictly increasing concave function and ¢(0) = 0. T <p7 S
then ¢(T) <mrr ¢(S).
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The next theorem states that the IMIT aging notion is preserved under increasing
concave transformations. For similar kind of results, see Al-Wasel et al. (2006).

Theorem 2.1.

A non-negative random variable T is IMIT if, and only, if ¢(T3) <mrr ¢(T), for
all non-negative increasing concave function ¢ with ¢(0) =0 and ¢t > 0.

Proof.

We give the proof of the necessity only. Suppose that T" is IMIT and let ¢ be any
non-negative increasing concave function with ¢(0) = 0. Hence, we have to prove
that

(#(Tt) | $(T2) < s] <muT [6(T) | #(T) < 8], for all s < min(@(ur,), #(ur)). (2.8)

From the assumption, it follows that (Tt)g-1(s) <mrr (T)p-1(s)0T, equivalently,
[T | T < ¢7 ()} <prr [T| T < ¢7'(s)], for each s. (2.9)

Here the inverse ¢! of ¢ is taken to be the right continuous version of it defined by
¢ (u) = sup{z : ¢(z) < u} for u € R. From the definition of ¢! and the continuity
of ¢, it is easy to check that u < ¢~!(s) if, and only, if ¢(u) < s. Thus (2.9) can be
rewritten as [Ty | ¢(Ty) < s} <mrr [T | ¢(T) < sjfor eachs and ¢t > 0. Appealing to
Lemma 2.1, we get that ¢({T3 | ¢(Tt) < s]) <mrr ¢([T | ¢(T) < s]),implying (2.8).
This completes the proof. 1

Consider now a sequence of independent and identical distributed (z.i.d.) random
variables 11,75, ...and let © be a positive integer-valued random variable which is
independent of the T;. Denote by

T(I:G) = min{Tl, T2, ceny Te}, (2.10)

and
T(e:e) = ma.x{Tl, T2, ceey Te} (2.11)

The random variables T{;.e) and T(e.g) arise naturally in reliability theory as
the lifetimes of a series and parallel systems, respectively, with the random number
© of identical components with lifetimes 13,73, ..., Te. In life-testing, if a random
censoring is adopted, then the completely observed data constitute a sample of
random size, say 11,73, ...,Te, where © > 0 is a random variable of integer value.
In actuarial science, the claims received by an insurer in a certain time interval should
also be a sample of random size, and, T(g.g), denotes the largest claim amount of
the period. Also T{;.e) arises naturally in survival analysis as the minimal survival
time of a transplant operation, where © of them are defective and hence may cause
death.

Recently, many authors have paid their attention to behaviors of aging properties
for random minima and maxima (see, Shaked and Wong (1997), Lt and Zuo (2004)
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and Ahmad and Kayid (2006)). Next, we study behavior of the IMIT life distribution
for random maxima. To state and prove Theorem 2.2 below, we need the following
lemma. The proof is trivial and hence is omitted.

Lemma 2.2.

A non-negative random variable T has the IMIT property if, and only, if
T(s) <MRL T(t), forall0<s<t.
Theorem 2.2.

Let 11,13, ...,Te be a sequence of i.7.d. random variables copies of T and © is
independent of T;’s. If max{T},T5,...,Te} is IMIT then T is also IMIT.

Proof.
First note that, for all s > 0,
(max {71, .., To}) ) =st min { (T1)(5)»-» (To) (5} - (2.12)
Since max {71, ...,Te} is IMIT, by Lemma 2.2, it holds that,
(max {T1, ...,Te})(s) <mrr (max {11, ...,Te})(t) ,forall0<s<t. (2.13)

Thus, by (2.12), forall 0 < s < ¢,

min {(Tl)(s) g eeey (Te)(s)} SMRL min {(Tl)(t) 3 eeey (Te)(t)} . (214)
In view of Corollary 3.3. of Li and Xu (2006) we have
min{T, ..., Te} <mrr min{Sy,...,Se} = T <mrL S. (2.15)

Now it follow from (2.14) and (2.15) that T(5y <mrr T(), for all 0 < s < t. Again,
by Lemma 2.2, T is IMIT. |

3. MULTIVARIATE CONDITIONAL MIT FUNCTIONS

A complex system usually consists of several components which are working
under the same environment and hence their lifetimes are, generally, dependent. In
the literature several attempts have been made to extend the concepts of univariate
stochastic orders and/ or life classes to the bivariate and multivariate cases. Some
important references are Barlow and Spizzichino (1993), Bassan and Spizzichino
(1999) and Bassan et al. (2002), among others.

This section is divided into two main subsections. The first one is concerned
with the construction of the bivariate case of the MIT functions. In the second
subsection, the multivariate case of the MIT functions is presented and studied.

3.1 Bivariate case



M. Kayid 133

Let T = (11,72) be a random vector admitting an absolute continuous
distribution function ¥(t1,t2) in the support of RY = {(t1,t2) | t1,t2 > 0}. Let
Y(t1,t2) = P{T1 < t1,T2 < t2} be the distribution function of T. The conditional
MIT function of T is defined by the vector pu(ti,t2) = (p1(t1,t2), u2(t1,t2)) ,where,

pi(t, t2) = E[t; — TfT; < ;,Tj = t5],t1,t2 > 0,4,5 = 1,2, # j. (3.1)
For ¢ = 1, the equation (3.1) reduce to

1 ty
"/’l(tlv t2)0

where, 11 (t1,t2) is the distribution function of T} given Tp = t5.

F"l(tl’tZ) = 1/11(93»'52)611', (3'2)

Similarly for i = 2,
1 t

() (tl ’ t2) 0
where, 12(t1,t2) is the distribution function of T, given T = t;.

/LQ(t1,t2) = ) (tl,il:)d:l‘, (3.3)

In reliability analysis p;(¢1,t;) measure the expected waiting time of the first
component conditioned on the fact that the failure of the first had occurred in [0, z]
and the failure time of the second is t2. From (3.2) and (3.3), it is easy to observe
that the bivariate MIT determine the conditional distribution of T; given T; = z;,
1,7 = 1,2,7 # j. Further, it is easier for an engineer to postulate the behavior
of these functions which will be useful in studying the reliability properties of the
system.

Consider now another random vector S = (S, S2) admitting an absolute con-
tinuous distribution function ¢(¢1,t2) in the support of R = {(t1,%2) | t1,¢2 > 0}.
The bivariate MIT function of S is defined by the vector

B(t1,t2) = (Br(t1,t2), B2(t1,t2)), (3.4)

where,
IB‘i(t17t2) = E[tl - Silsi < ti’Sj = t]] b1, b2 > O;iaj = 1a2)i # .7 (35)

We say that a random vector T is less than S in the MIT ordering (denoted
by T <pr S) if for every i = 1,2 and t > 0 one has p;(t1,t2) > Bi(t1,t2), for all
t1,t2 > 0.

Let us now introduce the definition of the IMIT life class in bivariate case.
Definition 3.1.

An exchangeable random vector T = (71,7%) is said to have bivariate IMIT
(BIMIT) distribution if for ¢; < to

E[tl—TllTl < ty, Ty <t2] SE[tQ-—T2|T1 <t1,T2<t2]
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or equivalent, T is BIMIT if, and only, if

t1 ta
/ F(z,t2)dz < / Flz, t1)de
0 0
for all t; < t3. Note that, for a univariate case, if
t-T|T<t]<pmir T, foranyt>0, (3.6)

then T is of IMIT. Therefore, in the case of i.i.d. variables 77, T3, the condition that
they are IMIT is equivalent to [t — 11 | T1 < t] <mrr T2, for anyt > 0.

3.2 Multivariate case

Let T = (T1,T3,...,T) be a vector of non-negative random variables. The
random variables 11,75, ..., T, can be thought of as lifetimes of p components. Sup-
pose that T has an absolutely continuous distribution function F. As in bivariate
case, in order to avoid technical complications, we assume that the support of F is
[0, c0)P.

Let I = {i1,d9,...,ix} C {1,2,...,p} = N, t = (t1,t2,...,ts) and j € I. Then
tr denotes (¢;,,%i,,...,t;, ). The vector (1,1,...,1) is denoted by e; its dimension
can always be determined from the context. If I is a subset of N then I denotes its
complement with respect to N. For I, t1,t and j, as above, we define the multivariate
conditional MIT of T} at time ¢ by

[,l.j(t | Ty = tI) = E[t ——Tj | Tr=t,Ti < te]. (3.7)

First, we introduce a notation that will be useful here. Let w() denote a realiza-
tion of the reversed failure times, up to time t, associated with the random vector
T. That is, wy) is an event of the form w(;) = {T1 = t1, Tt < te}, where I C N and
te > 0e. Such an event is called a reversed history; it lists reversed failures that have
occurred up to time t (see Shaked and Shantikumar (1994)). With this notation, we
abbreviate u;(t | Tt = t1) defined in (3.5) by u;(w))-

Consider now another random vector S and let us denote to the multivariate
conditional MIT function of S, given a history w(y) associated with S, by f;(w)) =
E[t - Sj | w(t)].

We say that T is less than S in the MIT ordering (denoted by T <psrr S) if,
and only, if for every ¢t > 0

wi(wey) = Bi(wy), whenever wyy < wy, (3-8)

where j denotes a component which has not failed by time ¢ in reversed history wzt).
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Condition (3.8) is the multivariate analog of (2.7). It simply state that at any
time ¢ the MIT of T; is smaller than the MIT of S;. Next, we denote

RHR;(t) = X(T|Ti=tr)

= liméP{t—At <t;<tlwg},
and we call this function the multivariate conditional reversed hazard rate of T} at
time t. It should be pointed out that the following multivariate analog of (2.7) holds:
T<py S=T <miT S.

By the multivariate analog of the MIT ordering one can generalize (3.6) to the
multivariate case, thus introducing notions of multivariate IMIT distributions. The
proof of the following preposition is similar to the proof of Theorem 4.1(b) of Shaked
and Shanthikumar (1990), and is omitted.

Proposition 3.1.
A non-negative random vector T is of IMIT if

[te - T w(t)] <mrr T (3.9)

for any history h(;,t > 0.

Let us now study multivariate extension of (3.6). This define class of M-IMIT
(multivariate IMIT) distributions. Denote by 9y to the time shift operator. That is,
if T = (T1,T5, ..., Tp) is a non-negative vector of random lifetimes then 19(t)T = (t,—

{t"
We say that w) is less severe than “)Zt’) (denoted by wyy < wzt,)) fwy < wzt).

T)", ¢t > 0. Let wl(t) denote the information contained in w, ,, over the interval [0, ¢].

Therefore a possible multivariate extension of (3.6) is the following.

Definition 3.2.
For t > 0 and history w(t) if

[ﬂ(t)T | w(t)] <mirT. (3.10)

then any random vector T (or its distribution) is of M-IMIT.

Other situation, in which M-IMIT random vectors arias, can be identified from
the following proposition which points out an important closure property.

Proposition 3.2.

If T1,Ts, ..., T, are independent IMIT random variables then T = (T3, T3, ..., Tp)
is M-IMIT.

This proposition can be easily proven using (3.6) and (3.10).

To introduce the definition of the DRHR and the IMIT classes in the multivariate
setting, let use denote by RHR;{t} to the multivariate reversed hazard for T; and
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pi{t} to the multivariate MIT for T;, where p;(t1,t2,...,tp) = Et;—Ts | x1.0:p(Ti <
ti)],where Xx1.ip(2) = (21,%2,..., Ti~1, Tit1,----, Tp); 2 is any value (including null).

Definition 3.3.

A cumulative distribution function F is said to be:

(7) multivariate decreasing reversed failure rate (M DRH R) if, and only, if RH R;{t}
decreasing in t; for all t and each 1.

(%) multivariate increasing mean inactivity time if, and only (MIMIT), if u;{t}
increasing in ¢; for all t and each 1.

Theorem 3.1.

The following chain of implication is true: MDRHRC MIMIT.
Proof.

Let Ql:‘i:p = (X1 < 1y Xie1 < 21,0, X1 < :l:i+1,...,Xp < :Bp); ¢ is any
relation (including null). Note that the distribution function F is MDRHR if, and
only, if

RHRi{tl:i:p <t1 - U>} 2 RH&{tlzi:p (tl)}’ (311)

for all u > 0, and for all z and each <.

On the other hand,

MIT{t} = E{ti~Ti| Quip(Ti <t:)}

Jo~ cdf {2y, (8 — w)}du

cdf{t,.,(t:)}
Hence
OMIT{t} [ [cdf{t,.,(ti —u)} , A . o] du
5w = [ df (., (8 }'[RHR%{%“’)} RHEs{t ()]

2 0,

where is the inequality follows from (3.11). Hence cdf{z} is MDRHR. I

4. SOME APPLICATIONS

In reliability theory, a multivariate classification system is meaningful and
usable for survival only if it has the 4 essential properties:
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(1) A p-variate classification system should reduce to the standard univariate clas-
sification system when p = 1.

(2) If, according to a multivariate classification system, a T belongs to a particular
class, say A, then every subset (T;,,T5,,...,7i,.), 1 < r < p, of T must also
belong to the same class A.

(3) If, according to a multivariate classification system, 2 s—independent T; and
T, belong to a particular class, say class A, then the collection of all T = (T, T2)
the component lives must also belong to class A.

(4) If, according to a multivariate classification system, a T belongs to a particular
class, say A, then a positive scaling (c; -T1,¢2- T3, ..., ¢p- Tp) of T for all ¢; > 0,
must also belong to class A.

In the above properties, we point out that property (2) allows for removal of com-
ponents from a s-independent system without affecting the multivariate class prop-
erty while property (3) allows inclusion of additional components to a s—independent
system retaining the same classification system. In addition, property (4) ensures
that a simultaneous change in scales of measurements can be undertaken without
disturbing the multivariate class property (For more details, please see, Roy (2001)).

While defining a system, Hawryszkiewycz (1994) has pointed out that a system
should preferably be mad up of subsystems, to handle system complexity and im-
prove the understanding of a system. A good system is made of highly s-independent
subsystems with emphasis on their integration. This means expanding a system into
s-independent subsystems during design (see, Lloyd and Lipow (1990)). A special
use of property (2) is for developing reliability bounds. By appealing to marginal
analysis, univariate reliability bounds and property (2), bounds are easily developed
for the multivariate s-independent system in an iterative way. The objective of
this section is to show that the MDRHR and MIMIT possesses all of the above
essential properties so that reliability bounds can be easily worked out.

Before state and prove Theorem 4.1 below let us denote by

Tl = (TlaT27 "'7Tp)7 T2 = (Tp+17Tp+27 --':Tp+q)- (41)
Theorem 4.1.

If two s-independent vector variables defined in (4.1) belong to a MDRHR
(MIMIT) class, then T = (T, T2) also belong to the same MDRHR (MIMIT)
class.

Proof.
First, note that the distribution function of T is F(t)= Hk = 12F(tx),where

Fi(tx) is the distribution function of Ty, k& = 1,2. Thus, RH(t)=RH(t;) +
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RH(tg)and

RH;(t) = rhyi(t1), fori=1,2,..,p,

RH;(t) = rhy,(ty), fori=p+1,p+2,..,p+gq,
where, RH(t) and RH;(t) are the multivariate reversed hazard at t and the multi-
variate reversed hazard for component i at t, respectively. Then, following Definition

3.3 (¢), the MDRHR property ensured for T from the MDRHR property of T
and T2.

For the MIMIT class, observe that

/J‘l(t) = /-‘Ll,i(tl)v fori=1a27“'ap

pi(t) = poi(te), fori=p+1,..,p+4q

Hence, from the MIMIT property of T and T9, and from Definition 3.3 (i¢), this
is the MIMIT property of T. I

Theorem 4.2.

If a vector life variable T = (T1,T%,...,Tp) belong to a MDRHR (MIMIT)
class, then T = (c-T1,c- Ty, ..., ¢- Tp) also belong to the same MDRHR (MIMIT)
class.

Proof.

Let F¢(t), RHR;(t) and pc;(t) are the distribution function, the multivariate
reversed hazard of component 7 and the multivariate MIT of component 7 of T,

respectively. Observe that F.(t) = (—l iz 5’5) shence for each i = 1,2,...,p

c1’lecp?”
t1 t t
RHR.;(t) = = - RHR;(—, 2, ..., 2), (4.2)
ca’er’ ey
and 1 t t t
peit) = — il 2o ). (4.3)

Co cp

Then if T is MDRHR, the RHR;(t) given in (4.2) ensures the MDRHR class
property of T, for all ¢; > 0. The remaining part of the theorem can be easily
deduced by using (4.3). 1
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