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Abstract. In this article, a new model based on Lomax distribution is introduced. This 
new model is both useful and practical in areas such as economic, reliability and life 
testing. Some statistical properties of this model are presented including moments, hazard 
rate, reversed hazard rate, mean residual life and mean inactivity time functions, among 
others. It is also shown that the distributions of the new model are ordered with respect to 
the strongest likelihood ratio ordering. The method of moment and maximum likelihood 
estimation are used to estimates the unknown parameters. Simulation is utilized to 
calculate the unknown shape parameter and to study its properties. Finally, to illustrate the 
concepts, the appropriateness of the new model for real data sets are included. 
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1. INTRODUCTION AND MOTIVATION 

Numerous classical distributions have been used extensively over the past decades for 
modeling data in areas such as engineering, actuarial, environmental and medical sciences, 
biological studies, demography, economics, finance and insurance. Of these, the Lomax 
distribution (LD) is a widely used model event that occurs in fields such as reliability, 
actuarial science, queuing problems and biological sciences. A random variable X is said 
to have Lomax distribution if its probability distribution function (pdf) is 

where  is the scale parameter and   is the shape parameter. The LD has been used in the 
literature in a number of ways. For example, it has been extensively used for reliability 
modeling and life testing (Balkema and de Haan (1974)). It also has been used as an 
alternative to the exponential distribution when data are heavy tailed (Bryson (1974)). 
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Ahsanullah (1991) studied the record values of LD, and Balakrishnan and Ahsanullah 
(1994) introduced some recurrent relationships between the moments of record values 
from LD. The order statistics from non-identical right-truncated Lomax 
random variables were studied by Childs et al. (2001). Many authors (Arnold et al. (1998), 
El-Din et al. (2013)) have studied LD from a Bayesian perspective. Howlader and Hossain 
(2002) presented Bayesian estimation of the survival function of the LD. Ghitany et al. 
(2007) extended LD via the Marshall Olkin approach. Cramer and Schmiedt (2011) 
considered data on progressively type-II censored competing risks from Lomax 
distribution. The LD also has several applications in economics, actuarial modeling, 
queuing problems and biological sciences (Johnson et al. (1994)). 
In many applied areas such as lifetime analysis, finance and insurance, there is a clear 
need for extended form of LD distribution. One and well-known method to extend the 
distributions is the length-biased (LB) distributions. Formally, if Y is a lifetime random 
variable (r.v) with probability distribution function (pdf) , then the weighted version 
of Y with weight function , which we denote by the r.v  and whose distribution is 
called the weighted distribution, has pdf given by 

                                                (1.1) 
by assuming the first moment of  exists. A particular case of the weighted 
distributions is obtained when we substitute  in Eq. (1.1). In this case, is called 
the size-biased or length-biased (LB) version of Y, denoted by the r.v. T, which has pdf 
expressed as 

where .
LB distributions have been applied in various fields such as biometry, ecology, 
environmental sciences, reliability, and survival analysis. A review of these distributions 
and their applications is included in Gupta and Kirmani (1995). LB distribution occurs 
naturally in many situations, because sometimes it is not possible to work with a truly 
random sample from the population of interest. In particular, in the environmental field, 
Patil (2002) mentioned that observations might fall in non-experimental, non-replicated, 
and non-random categories, thereby making random selection from the target population 
impossible. Thus, in this case, model specification and data interpretation problems 
acquire great importance. One way of confronting this problem is by considering 
observations selected with probability proportional to their length. The resulting 
distribution is called an LB distribution, which adjusts the probabilities of the actual 
occurrence of events to arrive at a specification of the probabilities of those events as 
observed and recorded. Failure to make such adjustments can lead to invalid conclusions. 
In this article, we propose a new model called length-biased Lomax (LBL) distribution. In 
Section 2, we introduce the new model and present some basic properties and 
characterizations. In Section 3, we carry out a survival analysis based on some reliability 
functions such as: hazard rate, reversed hazard, mean residual life, and mean inactivity 
time. In that section, we show that the new model is ordered with respect to the strongest 
likelihood ratio ordering. In Section 4, methods of moment estimates and maximum 
likelihood methods are used for estimating the shape parameter of the proposed model. In 
Section 5, we provide some applications with real data. Finally, in Section 6, we give a 
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brief conclusion and some remarks on current and future research. 

2. THE NEW MODEL

Suppose that the lifetimes of a given sample of items follow a LD, and that the items do 
not have the same chance of being selected but that each one is selected according to its 
lifespan. Then, the resulting distribution does not follow the LD but follows the length-
biased Lomax (LBL) distribution. LB versions for several distributions, such as Weibull, 
inverse Gaussian (IG), Sinhnormal (SN), and Birnbaum Saunders(BS) distributions, have 
been developed in the literature (cf. Sansgiry and Akman (2001), Boudrissa and Shaban 
(2007), Leiva et al. (2009)). Following the same method, we propose a new model as 
follows.

Definition 2.1. A non-negative random variable  is said to have LBL distribution with 
scale parameter  and shape parameter  if its probability density function is given by 

                           (2.1) 

For this new model the notation will be used. 
Clearly,  vanishes as  and . Taking the derivative of this function 
with respect to t yields 
                                   

which has a maximum at . The shapes of the pdf for special values of the shape 
parameter  and  = 1 are illustrated in Figure 2.1. 

Figure 2.1. The pdf of LBL for different  and =1

The positive integer moments are useful for inference and model fitting (cf., Johnson et al. 
(1994) p. 23, Sanhueza et al. (2001)). The next result allows us to compute the moments 
of the LBL distribution. 
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Lemma 2.1. If LBL then the  moment is given by 
                            E(  =  ,

From the above result, the mean and variance are given respectively by 
E(T)=  ,

and
Var(T) =   ,

The coefficient of skewness of the LBL distribution is given by 

 =  ,

which is independent of . Since is positive, the distribution is skewed to the right, 
which is also clear from the plot of the pdf in Figure 1. The coefficient of kurtosis of
the LBL distribution isgiven by 

 =   ,
which is positive. Figure 2.2 shows graphical representations of  and . From Figure 2, 
it is observed that  and  decrease as  increases. 

Figure 2.2. The skewness and the kurtosis measures 

3. SURVIVAL ANALYSIS 

Survival analysis is commonly used in the reliability literature to analyze the determinants 
of firm failure. In addition, it can be used for socio-economic research to investigate 
complex phenomena such as employment, supply and demand for bank loans, life 
expectancy of products, the producer and consumer, etc. In reliability theory, there are 
some additional functions of interest that are based on the distributions and densities. 
Intuitively, the survival rate at time  gives the probability that the value of a random 
variable will exceed , while the hazard rate (HR) is the probability of observing an 
outcome within a neighborhood of , conditional on the outcome being no less than .
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Finally, the reverse hazard (RH) rate is the probability of observing an outcome in a 
neighborhood of , conditional on the outcome being no more than . Several studies 
have applied these functions to reliability models (cf. Barlow and Proschan (1975)). The 
survival, HR, and RHR functions of the LBL distribution are given by 

                                                     (3.1) 

                                             (3.2) 

respectively. 

In the next theorem, we discuss the behavior of the HR of the LBL distribution. 

Theorem 3.1. Let  be a non negative random variable following the LBL distribution, 
then
(i) if , then  is increasing hazard rate (IHR) 

(ii) if , then is decreasing hazard rate (DHR). 

Proof.
The first and second derivatives of (3.2) are given by 

,
and

 , 

which has a maximum at 

The shapes of the HR and RHR of the LBL distribution for different values of  and at 
=1 are illustrated in Figure 3. 

   

Figure 3.1. The HR and RHR of LBL distribution for different and = 1 
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The mean residual life (MRL) function is very important in survival analysis. It is well 
known that MRL uniquely determines the distribution function, i.e. it contains all the 
information about the model (cf. Barlow and Proschan (1975), Navarro et al. (2002)). Let 
X be a lifetime random variable with survival function S( . If X  is finite, the MRL of 
X is defined by 

The MRL of the new model is given by 
, , ) = ,                                  (3.3) 

It is well known that decreasing (increasing) HR implies increasing (decreasing) MRL 
(see Barlow and Proschan (1975)). This reciprocal property may not hold for non-
monotone hazard rates. The shapes of the MRL of the LBL distribution for di erent values 
of  and = 1 are illustrated in Figure 3.2. 

Figure 3.2. The MRL of LBL distribution of different and = 1 

In addition to the above reliability functions, the inactivity time, also known as reversed 
residual life or waiting time, has been a topic of increasing interest in the literature. 
Although inactivity time has mainly been used to study reliability, it has also been useful 
to describe the behavior of lifetime random variables in survival retrospective studies, and 
some applications have been derived in risk theory and econometrics (cf. Kayid and 
Ahmad (2004)). The mean inactivity time (MIT) of non-negative continuous random 
variable  is defined by 

The MIT of LBL distribution is given by 

On the other hand, there are many situations in reliability and economics where it is useful 
to make comparisons between two distributions. Consider two random variables,  and ;
assumethat they both represent the same mapping from the same sample space into the 
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real line, but are governed by differing probability laws. More specifically, suppose that 
the realizations of  are typically higher than those of . One way to rigorously define this 
property is in terms of stochastic dominance. For the following definitions, let  and  be 
two non-negative random variables having distribution functions  and respectively; 
assume = 1  and = 1  as their respective survival functions, and  and  as 
corresponding density functions. 

Definition 3.2. A non-negative random variable  is said to be smaller than a random 
variable  in the: 
(i) First-order stochastic dominance (denoted as ) if
                                     for all 
(ii) Hazard rate order (denoted as ) if, 

for all
(iii) Reversed hazard rate order (denoted as ) if, 

G( )/F( )  g( ),  for all 
(iv) Likelihood ratio order (denoted as ), if 

g( ) decreasing in x 

The four orders of stochastic dominance defined above are related to one another, as the 
following implications: 

                     (3.2) 
Several applications of stochastic dominance in reliability, game theory, and industrial 
organization are found in the literature (cf. Shaked and Shanthikumar (2007)). The next 
theorem shows that the LBL distributions are ordered with respect to the strongest 
likelihood ratio ordering. 

Theorem 3.2. Let and Y LBL If then
( , , ).

Proof.
First let   =  then 

 = 
Since

[g(
then  is decreasing in  for , that is . The remaining statements 
follows from the implications (3.2). 

4. PARAMETERS ESTIMATION

The problem of estimation is of more central importance. In this section, we consider the 
estimation of the unknown parameters  and  of the LBL distribution. Two methods of 
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estimation are used, namely the method of moments and the maximum likelihood. The 
first method yields an explicit solution, in contrast to the second method. 

4.1 Moment estimates 
In the method of moments, we have to solve the equation 

                                                (4.1) 
Where is the sample moment and = ( ) is the population moment. 
From (4.1), we have 

                                                         (4.2) 
and

From (4.1), we obtain: 
                                                         (4.3) 

Using Eqs. (4.3) and (4.2), we have 

                                                (4.4) 

and
                                                     (4.5) 

4.2 Maximum likelihood estimates 
Let  be a random sample from LBL distribution. The likelihood function is given 
by 

L =
=                      (4.6) 

The logarithm of the likelihood function is then given by 
        (4.7)

The maximum likelihood estimators (MLEs) of  and  can be obtained by solving the 
next two nonlinear equations 

                                (4.8) 
and

                              (4.9) 
Clearly there are no explicit solutions for (4.8) and (4.9), and they must therefore be 
solved numerically. 

4.3 Asymptotic confidence intervals 
From Eqs. (4.8) and (4.9) we have 
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Denote the MLE of  by , which are approximately bivariate normal with mean 
and covariance matrix , where  is the inverse of the observed information 

matrix  (Lawless (2003)). 

 = 

The approximate 100% confidence intervals (CIs) for parameters and ,
respectivelyare 

Where  and  are the variances of  and , which are given by the first and the 
second diagonal elements of , and  is the upper  percentile of the 
standard normal distribution. 

5. SOME APPLICATIONS 

5.1 Numerical example 
In this subsection, for a given known scale parameter ( ), 1000 different samples are 
simulated from LBL with different sizes. The behaviors of the moment estimate (ME) and 
the maximum likelihood estimates (MLE) are studied from unknown shape parameter .
Tables 5.1 and 5.2 present the ME and MLE of parameter , respectively. 

Table 5.1. Moment estimate of the parameter 

From Table 5.1, it is observed that the mean square errors of the moment estimates of 
parameter decrease with increasing sample size ( ). There is an overestimate in all of the 
chosen values of the parameter here. 
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Table 5.2. Maximum likelihood estimate of the parameter 

From Table 5.2, the mean square errors of the maximum likelihood estimate of parameter  
decrease with increasing sample size ( ). In addition, the estimation of  is better for 
small values of  in terms of the mean square error. Comparing Table 5.1 with Table 5.2, 
it is clear that the maximum likelihood estimation provides much better results than the 
method of moment estimation in terms of mean square error and bias. 

5.2 Real data 
In this subsection, we analyze a real data set to show how the new model works in practice. 
The data set obtained from Hubble (1929) represents the distance between extra-galactic 
nebulae and Earth, measured in mega parsecs 

Data Set 

The data were fitted to LD and LBL distributions. We use the Kolmogorov Smirnov (K S)
distances between the empirical distribution function and the fitted distribution function to 
determine the appropriateness of the model. The K S values are presented in Table 5.3. 

Table 5.3. The K-S value of distributions 

The K S for LBL is smaller than that for LD, which indicates that these data t the LBL 
better than the LD. 
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6. CONCLUSION 

The proposed length-biased Lomax distribution has several desirable properties and useful 
physical interpretations. This model is useful and practical in areas such as physics, 
reliability, and life testing. The model has a unimodal pdf and an eventually decreasing 
hazard rate function. Such characteristics are useful for modeling continuous data from 
life testing experiments. Analysis of real data sets demonstrates that the proposed 
distribution can provide a better fit than other well-known distributions. Interesting future 
applications include studying length-biased versions of log normal and inverse Gaussian 
distributions, among others. 
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