• 제목/요약/키워드: reverse transcription recombinase polymerase amplification

검색결과 9건 처리시간 0.034초

Rapid and Visual Detection of Barley Yellow Dwarf Virus by Reverse Transcription Recombinase Polymerase Amplification with Lateral Flow Strips

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제38권2호
    • /
    • pp.159-166
    • /
    • 2022
  • Barley yellow dwarf virus (BYDV) has been a major viral pathogen causing significant losses of cereal crops including oats worldwide. It spreads naturally through aphids, and a rapid, specific, and reliable diagnostic method is imperative for disease monitoring and management. Here, we established a rapid and reliable method for isothermal reverse transcription recombinase polymerase amplification (RT-RPA) combined with a lateral flow strips (LFS) assay for the detection of BYDV-infected oat samples based on the conserved sequences of the BYDV coat protein gene. Specific primers and a probe for RT-RPA reacted and optimally incubated at 42℃ for 10 min, and the end-labeled amplification products were visualized on LFS within 10 min. The RT-RPA-LFS assay showed no cross-reactivity with other major cereal viruses, including barley mild mosaic virus, barley yellow mosaic virus, and rice black streaked dwarf virus, indicating high specificity of the assay. The sensitivity of the RT-RPA-LFS assay was similar to that of reverse transcription polymerase chain reaction, and it was successfully validated to detect BYDV in oat samples from six different regions and in individual aphids. These results confirm the outstanding potential of the RT-RPA-LFS assay for rapid detection of BYDV.

Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of Barley Yellow Dwarf Virus in Oat

  • Kim, Na-Kyeong;Kim, Sang-Min;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.497-502
    • /
    • 2020
  • Barley yellow dwarf virus (BYDV) is an economically important plant pathogen that causes stunted growth, delayed heading, leaf yellowing, and purple leaf tip, thereby reducing the yields of cereal crops worldwide. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for the detection of BYDV in oat leaf samples. The RT-RPA assay involved incubation at an isothermal temperature (42℃) and could be performed rapidly in 5 min. In addition, no cross-reactivity was observed to occur with other cereal-infecting viruses, and the method was 100 times more sensitive than conventional reverse transcription polymerase chain reaction. Furthermore, the assay was validated for the detection of BYDV in both field-collected oat leaves and viruliferous aphids. Thus, the RT-RPA assay developed in the present study represents a simple, rapid, sensitive, and reliable method for detecting BYDV in oats.

Detection of Apple Scar Skin Viroid by Reverse Transcription Recombinase Polymerase Amplification Assay

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Cho, In-Sook;Ju, Ho-Jong;Jeong, Rae-Dong
    • 식물병연구
    • /
    • 제27권2호
    • /
    • pp.79-83
    • /
    • 2021
  • The aim of the present study was to develop a sensitive and specific detection method for the rapid detection of apple scar skin viroid (ASSVd) in apple leaves. The resulting reverse transcription recombinase polymerase amplification (RT-RPA) assay can be completed in 10 min at 42℃, is 10 times more sensitive than conventional reverse transcription polymerase chain reaction, and can specifically amplify ASSVd without any cross-reactivity with other common apple viruses, including apple stem grooving virus, apple stem pitting virus, and apple chlorotic leaf spot virus. The reliability of the RT-RPA assay was assessed, and the findings suggested that it can be successfully utilized to detect ASSVd in field-collected samples. The RT-RPA assay developed in the present study provides a potentially valuable means for improving the detection of ASSVd in viroid-free certification programs, especially in resource-limited conditions.

Rapid and Specific Detection of Apple stem grooving virus by Reverse Transcription-recombinase Polymerase Amplification

  • Kim, Nam-Yeon;Oh, Jonghee;Lee, Su-Heon;Kim, Hongsup;Moon, Jae Sun;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • 제34권6호
    • /
    • pp.575-579
    • /
    • 2018
  • Apple stem grooving virus (ASGV) is considered to cause the most economically important viral disease in pears in Korea. The current PCR-based methods used to diagnose ASGV are time-consuming in terms of target detection. In this study, a novel assay for specific ASGV detection that is based on reverse transcription-recombinase polymerase amplification is described. This assay has been shown to be reproducible and able to detect as little as $4.7ng/{\mu}l$ of purified RNA obtained from an ASGV-infected plant. The major advantage of this assay is that the reaction for the target virus is completed in 1 min, and amplification only requires an incubation temperature of $42^{\circ}C$. This assay is a promising alternative method for pear breeding programs or virus-free certification laboratories.

Application of Rapid and Reliable Detection of Cymbidium Mosaic Virus by Reverse Transcription Recombinase Polymerase Amplification Combined with Lateral Flow Immunoassay

  • Do-Hyun, Kim;Rae-Dong, Jeong;Sena, Choi;Ho-Jong, Ju;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.665-672
    • /
    • 2022
  • Cymbidium mosaic virus (CymMV) is one of economically important viruses that cause significant losses of orchids in the world. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow immunostrip (LFI) assay was developed for the detection of CymMV in orchid plants. A pair of primers containing fluorescent probes at each terminus that amplifies highly specifically a part of the coat protein gene of CymMV was determined for RT-RPA assay. The RT-RPA assay involved incubation at an isothermal temperature (39℃) and could be performed rapidly within 30 min. In addition, no cross-reactivity was observed to occur with odontoglossum ringspot virus and cymbidium chlorotic mosaic virus. The RT-RPA with LFI assay (RT-RPA-LFI) for CymMV showed 100 times more sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR). Furthermore, the RT-PCR-LFI assay demonstrated the simplicity and the rapidity of CymMV detection since the assay did not require any equipment, by comparing results with those of conventional RT-PCR. On-site application of the RT-RPA-LFI assay was validated for the detection of CymMV in field-collected orchids, indicating a simple, rapid, sensitive, and reliable method for detecting CymMV in orchids.

RT-RPA Assay Combined with a Lateral Flow Strip to Detect Soybean Mosaic Virus

  • Bong Geun Oh;Ju-Yeon Yoon;Ho-Jong Ju
    • The Plant Pathology Journal
    • /
    • 제40권4호
    • /
    • pp.337-345
    • /
    • 2024
  • Soybean (Glycine max L.) is one of the most widely planted and used legumes in the world, being used for food, animal feed products, and industrial production. The soybean mosaic virus (SMV) is the most prevalent virus infecting soybean plants. This study developed a diagnostic method for the rapid and sensitive detection of SMV using a reverse transcription-recombinase polymerase amplification (RT-RPA) technique combined with a lateral flow strip (LFS). The RT-RPA and RT-RPA-LFS conditions to detect the SMV were optimized using the selected primer set that amplified part of the VPg protein gene. The optimized reaction temperature for the RT-RPA primer and RT-RPA-LFS primer used in this study was 38℃ for both, and the minimum reaction time was 10 min and 5 min, respectively. The RT-RPA-LFS was as sensitive as RT-PCR to detect SMV with 10 pg/µl of total RNA. The reliability of the developed RT-RPA-LFS assay was evaluated using leaves collected from soybean fields. The RT-RPA-LFS diagnostic method developed in this study will be useful as a diagnostic method that can quickly and precisely detect SMV in the epidemiological investigation of SMV, in the selection process of SMV-resistant varieties, on local farms with limited resources.

Combination of multiplex reverse transcription recombinase polymerase amplification assay and capillary electrophoresis provides high sensitive and high-throughput simultaneous detection of avian influenza virus subtypes

  • Tsai, Shou-Kuan;Chen, Chen-Chih;Lin, Han-Jia;Lin, Han-You;Chen, Ting-Tzu;Wang, Lih-Chiann
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The pandemic of avian influenza viruses (AIVs) in Asia has caused enormous economic loss in poultry industry and human health threat, especially clade 2.3.4.4 H5 and H7 subtypes in recent years. The endemic chicken H6 virus in Taiwan has also brought about human and dog infections. Since wild waterfowls is the major AIV reservoir, it is important to monitor the diversified subtypes in wildfowl flocks in early stage to prevent viral reassortment and transmission. To develop a more efficient and sensitive approach is a key issue in epidemic control. In this study, we integrate multiplex reverse transcription recombinase polymerase amplification (RT-RPA) and capillary electrophoresis (CE) for high-throughput detection and differentiation of AIVs in wild waterfowls in Taiwan. Four viral genes were detected simultaneously, including nucleoprotein (NP) gene of all AIVs, hemagglutinin (HA) gene of clade 2.3.4.4 H5, H6 and H7 subtypes. The detection limit of the developed detection system could achieve as low as one copy number for each of the four viral gene targets. Sixty wild waterfowl field samples were tested and all of the four gene signals were unambiguously identified within 6 h, including the initial sample processing and the final CE data analysis. The results indicated that multiplex RT-RPA combined with CE was an excellent alternative for instant simultaneous AIV detection and subtype differentiation. The high efficiency and sensitivity of the proposed method could greatly assist in wild bird monitoring and epidemic control of poultry.

Development of Recombinase Polymerase Amplification Combined with Lateral Flow Strips for Rapid Detection of Cowpea Mild Mottle Virus

  • Xinyang Wu;Shuting Chen;Zixin Zhang;Yihan Zhang;Pingmei Li;Xinyi Chen;Miaomiao Liu;Qian Lu;Zhongyi Li;Zhongyan Wei;Pei Xu
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.486-493
    • /
    • 2023
  • Cowpea mild mottle virus (CPMMV) is a global plant virus that poses a threat to the production and quality of legume crops. Early and accurate diagnosis is essential for effective managing CPMMV outbreaks. With the advancement in isothermal recombinase polymerase amplification and lateral flow strips technologies, more rapid and sensitive methods have become available for detecting this pathogen. In this study, we have developed a reverse transcription recombinase polymerase amplification combined with lateral flow strips (RT-RPA-LFS) method for the detection of CPMMV, specifically targeting the CPMMV coat protein (CP) gene. The RT-RPA-LFS assay only requires 20 min at 40℃ and demonstrates high specificity. Its detection limit was 10 copies/µl, which is approximately up to 100 times more sensitive than RT-PCR on agarose gel electrophoresis. The developed RT-RPA-LFS method offers a rapid, convenient, and sensitive approach for field detection of CPMMV, which contribute to controlling the spread of the virus.