DOI QR코드

DOI QR Code

Combination of multiplex reverse transcription recombinase polymerase amplification assay and capillary electrophoresis provides high sensitive and high-throughput simultaneous detection of avian influenza virus subtypes

  • Tsai, Shou-Kuan (Department of Bioscience and Biotechnology, National Taiwan Ocean University) ;
  • Chen, Chen-Chih (Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology) ;
  • Lin, Han-Jia (Department of Bioscience and Biotechnology, National Taiwan Ocean University) ;
  • Lin, Han-You (School of Veterinary Medicine, National Taiwan University) ;
  • Chen, Ting-Tzu (School of Veterinary Medicine, National Taiwan University) ;
  • Wang, Lih-Chiann (School of Veterinary Medicine, National Taiwan University)
  • 투고 : 2019.08.06
  • 심사 : 2019.12.30
  • 발행 : 2020.03.31

초록

The pandemic of avian influenza viruses (AIVs) in Asia has caused enormous economic loss in poultry industry and human health threat, especially clade 2.3.4.4 H5 and H7 subtypes in recent years. The endemic chicken H6 virus in Taiwan has also brought about human and dog infections. Since wild waterfowls is the major AIV reservoir, it is important to monitor the diversified subtypes in wildfowl flocks in early stage to prevent viral reassortment and transmission. To develop a more efficient and sensitive approach is a key issue in epidemic control. In this study, we integrate multiplex reverse transcription recombinase polymerase amplification (RT-RPA) and capillary electrophoresis (CE) for high-throughput detection and differentiation of AIVs in wild waterfowls in Taiwan. Four viral genes were detected simultaneously, including nucleoprotein (NP) gene of all AIVs, hemagglutinin (HA) gene of clade 2.3.4.4 H5, H6 and H7 subtypes. The detection limit of the developed detection system could achieve as low as one copy number for each of the four viral gene targets. Sixty wild waterfowl field samples were tested and all of the four gene signals were unambiguously identified within 6 h, including the initial sample processing and the final CE data analysis. The results indicated that multiplex RT-RPA combined with CE was an excellent alternative for instant simultaneous AIV detection and subtype differentiation. The high efficiency and sensitivity of the proposed method could greatly assist in wild bird monitoring and epidemic control of poultry.

키워드

과제정보

This research was supported by grant number 107AS-24.1.1-S-a1 from Council of Agriculture Executive Yuan, Taiwan.

참고문헌

  1. Lamb RA, Krug RM. Orthomyxoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Momath TP, Roizman B (eds.). Fundamental Virology. p. 605-648, Lippincott-Raven Publisher, Philadelphia, 1996.
  2. Webster RG, Shortridge KF, Kawaoka Y. Influenza: interspecies transmission and emergence of new pandemics. FEMS Immunol Med Microbiol 1997;18:275-279. https://doi.org/10.1016/S0928-8244(97)00058-8
  3. Chang CF, King CC, Wan CH, Chang YC, Chan TC, David Lee CC, Chou PH, Li ZR, Li YT, Tseng TJ, Lee PF, Chang CH. Lessons from the largest epidemic of avian influenza viruses in Taiwan, 2015. Avian Dis 2016;60 Suppl:156-171. https://doi.org/10.1637/11168-051915-Reg
  4. Lee MS, Chen LH, Chen YP, Liu YP, Li WC, Lin YL, Lee F. Highly pathogenic avian influenza viruses H5N2, H5N3, and H5N8 in Taiwan in 2015. Vet Microbiol 2016;187:50-57. https://doi.org/10.1016/j.vetmic.2016.03.012
  5. Bureau of Animal and Plant Health Inspection and Quarantine. [cited 2015 August 8]. Available from: http://ai.gov.tw.
  6. Lee MS, Chang PC, Shien JH, Cheng MC, Chen CL, Shieh HK. Genetic and pathogenic characterization of H6N1 avian influenza viruses isolated in Taiwan between 1972 and 2005. Avian Dis 2006;50:561-571. https://doi.org/10.1637/7640-050106R.1
  7. Wei SH, Yang JR, Wu HS, Chang MC, Lin JS, Lin CY, Liu YL, Lo YC, Yang CH, Chuang JH, Lin MC, Chung WC, Liao CH, Lee MS, Huang WT, Chen PJ, Liu MT, Chang FY. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med 2013;1:771-778. https://doi.org/10.1016/S2213-2600(13)70221-2
  8. Lin HT, Wang CH, Chueh LL, Su BL, Wang LC. Influenza A(H6N1) virus in dogs, Taiwan. Emerg Infect Dis 2015;21:2154-2157. https://doi.org/10.3201/eid2112.141229
  9. Zhu H, Lam TT, Smith DK, Guan Y. Emergence and development of H7N9 influenza viruses in China. Curr Opin Virol 2016;16:106-113. https://doi.org/10.1016/j.coviro.2016.01.020
  10. Lee DH, Bertran K, Kwon JH, Swayne DE. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J Vet Sci 2017;18(S1):269-280. https://doi.org/10.4142/jvs.2017.18.S1.269
  11. Daher RK, Stewart G, Boissinot M, Bergeron MG. Recombinase polymerase amplification for diagnostic applications. Clin Chem 2016;62:947-958. https://doi.org/10.1373/clinchem.2015.245829
  12. Jaroenram W, Owens L. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome. J Virol Methods 2014;208:144-151. https://doi.org/10.1016/j.jviromet.2014.08.006
  13. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol 2006;4:e204. https://doi.org/10.1371/journal.pbio.0040204
  14. Euler M, Wang Y, Nentwich O, Piepenburg O, Hufert FT, Weidmann M. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J Clin Virol 2012;54:308-312. https://doi.org/10.1016/j.jcv.2012.05.006
  15. Abd El Wahed A, Weidmann M, Hufert FT. Diagnostics-in-a-suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol 2015;69:16-21. https://doi.org/10.1016/j.jcv.2015.05.004
  16. Yehia N, Arafa AS, Abd El Wahed A, El-Sanousi AA, Weidmann M, Shalaby MA. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Virol Methods 2015;223:45-49. https://doi.org/10.1016/j.jviromet.2015.07.011
  17. Daher RK, Stewart G, Boissinot M, Boudreau DK, Bergeron MG. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol Cell Probes 2015;29:116-121. https://doi.org/10.1016/j.mcp.2014.11.005
  18. McMurray CL, Hardy KJ, Hawkey PM. Rapid, automated epidemiological typing of methicillin-resistant Staphylococcus aureus. J Microbiol Methods 2010;80:109-111. https://doi.org/10.1016/j.mimet.2009.10.016
  19. Jiang LX, Ren HY, Zhou HJ, Zhao SH, Hou BY, Yan JP, Qin T, Chen Y. Simultaneous detection of 13 key bacterial respiratory pathogens by combination of multiplex PCR and capillary electrophoresis. Biomed Environ Sci 2017;30:549-561. https://doi.org/10.3967/bes2017.074
  20. Wu XL, Xiao L, Lin H, Yang M, Chen SJ, An W, Wang Y, Yao XP, Yang ZX, Tang ZZ. A novel capillary electrophoresis-based high-throughput multiplex polymerase chain reaction system for the simultaneous detection of nine pathogens in swine. BioMed Res Int 2017;2017:7243909.
  21. Schroeder ME, Johnson DJ, Ostlund EN, Meier J, Bounpheng MA, Clavijo A. Development and performance evaluation of a streamlined method for nucleic acid purification, denaturation, and multiplex detection of Bluetongue virus and Epizootic hemorrhagic disease virus. J Vet Diagn Invest 2013;25:709-719. https://doi.org/10.1177/1040638713503654
  22. Nikolayevskyy V, Trovato A, Broda A, Borroni E, Cirillo D, Drobniewski F. MIRU-VNTR genotyping of mycobacterium tuberculosis strains using QIAxcel technology: a multicentre evaluation study. PLoS One 2016;11:e0149435. https://doi.org/10.1371/journal.pone.0149435
  23. Dean DA, Wadl PA, Hadziabdic D, Wang X, Trigiano RN. Analyzing microsatellites using the QIAxcel system. Methods Mol Biol 2013;1006:223-243. https://doi.org/10.1007/978-1-62703-389-3_16
  24. Barakat H, El-Garhy HA, Moustafa MM. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes. Appl Microbiol Biotechnol 2014;98:9805-9816. https://doi.org/10.1007/s00253-014-6084-x
  25. Kerekgyarto M, Kerekes T, Tsai E, Amirkhanian VD, Guttman A. Light-emitting diode induced fluorescence (LED-IF) detection design for a pen-shaped cartridge based single capillary electrophoresis system. Electrophoresis 2012;33:2752-2758. https://doi.org/10.1002/elps.201200139
  26. Food and Agriculture Organization of the United Nations. Wild Birds and Avian Influenza: an Introduction to Applied Field Research and Disease Sampling Techniques. FAO, Rome, 2007.
  27. Fereidouni SR, Harder TC, Gaidet N, Ziller M, Hoffmann B, Hammoumi S, Globig A, Starick E. Saving resources: avian influenza surveillance using pooled swab samples and reduced reaction volumes in real-time RT-PCR. J Virol Methods 2012;186:119-125. https://doi.org/10.1016/j.jviromet.2012.08.002
  28. Thermo Fisher Scientific. Multiple Primer Analyzer [Internet]. Thermo Fisher Scientific; 2015 [updated 2015; cited 2015 August 8]. Available from: https://www.thermofisher.com/tw/zt/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-analyzer.html.
  29. Yang Y, Qin X, Song Y, Zhang W, Hu G, Dou Y, Li Y, Zhang Z. Development of real-time and lateral flow strip reverse transcription recombinase polymerase amplification assays for rapid detection of peste des petits ruminants virus. Virol J 2017;14:24. https://doi.org/10.1186/s12985-017-0688-6
  30. Crannell Z, Castellanos-Gonzalez A, Nair G, Mejia R, White AC, Richards-Kortum R. Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem 2016;88:1610-1616. https://doi.org/10.1021/acs.analchem.5b03267
  31. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta 2014;181:1715-1723. https://doi.org/10.1007/s00604-014-1198-5
  32. Luo GC, Yi TT, Jiang B, Guo XL, Zhang GY. Betaine-assisted recombinase polymerase assay with enhanced specificity. Anal Biochem 2019;575:36-39. https://doi.org/10.1016/j.ab.2019.03.018
  33. Steel J, Lowen AC. Influenza A virus reassortment. In: Compans RW, Oldstone MBA (eds.). Influenza Pathogenesis and Control-Volume I. pp. 377-401, Springer, Heidelberg, 2014.
  34. Sharp GB, Kawaoka Y, Jones DJ, Bean WJ, Pryor SP, Hinshaw V, Webster RG. Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. J Virol 1997;71:6128-6135. https://doi.org/10.1128/jvi.71.8.6128-6135.1997
  35. Wang G, Zhang T, Li X, Jiang Z, Jiang Q, Chen Q, Tu X, Chen Z, Chang J, Li L, Xu B. Serological evidence of H7, H5 and H9 avian influenza virus co-infection among herons in a city park in Jiangxi, China. Sci Rep 2014;4:6345. https://doi.org/10.1038/srep06345