• Title/Summary/Keyword: reverse selectivity

Search Result 36, Processing Time 0.021 seconds

Involvement of Amino Acids Flanking Glu7.32 of the Gonadotropin-releasing Hormone Receptor in the Selectivity of Antagonists

  • Wang, Chengbing;Oh, Da Young;Maiti, Kaushik;Kwon, Hyuk Bang;Cheon, Jun;Hwang, Jong-Ik;Seong, Jae Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • The Glu/$Asp^{7.32}$ residue in extracellular loop 3 of the mammalian type-I gonadotropin-releasing hormone receptor (GnRHR) interacts with $Arg^8$ of GnRH-I, conferring preferential ligand selectivity for GnRH-I over GnRH-II. Previously, we demonstrated that the residues (Ser and Pro) flanking Glu/$Asp^{7.32}$ also play a role in the differential agonist selectivity of mammalian and non-mammalian GnRHRs. In this study, we examined the differential antagonist selectivity of wild type and mutant GnRHRs in which the Ser and Pro residues were changed. Cetrorelix, a GnRH-I antagonist, and Trptorelix-2, a GnRH-II antagonist, exhibited high selectivity for mammalian type-I and non-mammalian GnRHRs, respectively. The inhibitory activities of the antagonists were dependent on agonist concentration and subtype. Rat GnRHR in which the Ser-Glu-Pro (SEP) motif was changed to Pro-Glu-Val (PEV) or Pro-Glu-Ser (PES) had increased sensitivity to Trptorelix-2 but decreased sensitivity to Cetrorelix. Mutant bullfrog GnRHR-1 with the SEP motif had the reverse antagonist selectivity, with reduced sensitivity to Trptorelix-2 but increased sensitivity to Cetrorelix. These findings indicate that the residues flanking $Glu^{7.32}$ are important for antagonist as well as agonist selectivity.

Loop Selective Direction Measurement for Distance Protection

  • Steynberg, Gustav;Koch, Geyhard
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.423-426
    • /
    • 2006
  • Distance relays achieve selective tripping by measurement of all short circuit fault conditions inside set reaches. The direction of the fault, forward or reverse is commonly determined with a dedicated measurement to ensure selectivity under all conditions. For the direction decision (measurement) a number of alternatives are available. This paper describes a loop selective direction measurement and illustrates by means of a typical fault why this is superior to a non loop selective direction measurement such as that based on negative sequence quantities.

Research Trends and Prospects of Reverse Electrodialysis Membranes (역전기투석용 이온교환막의 연구동향 및 전망)

  • Hwang, Jin Pyo;Lee, Chang Hyun;Jeong, Yeon Tae
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.109-120
    • /
    • 2017
  • The reverse electrodialysis (RED) is an energy generation system to convert chemical potential of saline water directly into electric energy via the combination of current derived from a redox couple electrolyte and ionic potential obtained when cation ($Na^+$) and anion ($Cl^-$) pass through cation exchange membrane (CEM) and anion exchange membrane (AEM) into fresh water, respectively. Ion exchange membrane, a key element of RED system, should satisfy requirements such as 1) low swelling behavior, 2) a certain level of ion exchange capacity, 3) high ion conductivity, and 4) high perm-selectivity to achieve high power density. In this paper, research trends and prospects of ionomer materials and ion exchange membranes are dealt with.

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 이경태;김상용;김창일;서용진;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.90-93
    • /
    • 2000
  • In this study, the rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.18um semiconductor device. To employ in STI CMP, the reverse moat process has been added thus the process became complex and the defects were seriously increased. Removal rates of each thin films in STI CMP was not equal hence the devices must to be effected, that is, the damage was occured in the device dimension in the case of excessive CMP process and the nitride film was remained on the device dimension in the case of insufficient CMP process than these defects affect the device characteristics. To resolve these problems, the development of slurry for CMP with high removal rate and high selectivity between each thin films was studied then it can be prevent the reasons of many defects by reasons of many defects by simplification of process that directly apply CMP process to STI structure without the reverse moat pattern process.

  • PDF

Property variation of transistor in Gate Etch Process versus topology of STI CMP (STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화)

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STD structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters. we studied the correlation between CMP thickness of STI using high selectivity slurry. DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased. the N-poly foot is deteriorated. and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point,, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by $100\AA$. 3.2 $u\AA$ of IDSN is getting better in base 1 condition. In POE 50% condition. 1.7 $u\AA$ is improved. and 0.7 $u\AA$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

Property variation of transistor in Gate Etch Process versus topology of STI CMP (STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화)

  • 김상용;정헌상;박민우;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STI) structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters, we studied the correlation between CMP thickness of STI using high selectivity slurry, DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased, the N-poly foot is deteriorated, and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by 100 ${\AA}$, 3.2 u${\AA}$ of IDSN is getting better in base 1 condition. In POE 50% condition, 1.7 u${\AA}$ is improved, and 0.7 u${\AA}$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

Study on the Optimization of HSS STI-CMP Process (HSS STI-CMP 공정의 최적화에 관한 연구)

  • Jeong, So-Young;Seo, Yong-Jin;Park, Sung-Woo;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.149-153
    • /
    • 2003
  • Chemical mechanical polishing (CMP) technology for global planarization of multi-level inter-connection structure has been widely studied for the next generation devices. CMP process has been paid attention to planarized pre-metal dielectric (PMD), inter-layer dielectric (ILD) interconnections. Expecially, shallow trench isolation (STI) used to CMP process on essential. Recently, the direct STI-CMP process without the conventional complex reverse moat etch process has established by using slurry additive with the high selectivity between $SiO_2$ and $Si_3N_4$ films for the purpose of process simplification and n-situ end point detection(EPD). However, STI-CMP process has various defects such as nitride residue, tom oxide and damage of silicon active region. To solve these problems, in this paper, we studied the planarization characteristics using a high selectivity slurry(HSS). As our experimental results, it was possible to achieve a global planarization and STI-CMP process could be dramatically simplified. Also we estimated the reliability through the repeated tests with the optimized process conditions in order to identify the reproducibility of HSS STI-CMP process.

  • PDF

Introduction of hook size as a tool for management measures of harvest control rules to improve grouper stock in Indonesia

  • Irfan Yulianto;Heidi Retnoningtyas;Dwi Putra Yuwandana;Intan Destianis Hartati;Siska Agustina;Mohamad Natsir;Mochammad Riyanto;Toni Ruchimat;Soraya Gigentika;Rian Prasetia;Budy Wiryawan
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.10
    • /
    • pp.617-627
    • /
    • 2023
  • Harvest control rules have been recently developed for some fisheries in Indonesia, including grouper fisheries, and are expected to reverse the trend of declining stocks. One of the proposed options of the harvest control rules is to implement the catch size limit. The catch size limit approach, however, is challenging, unless it is supported also with strong fisheries surveillance, law enforcement, and innovation. The catch size limit approach can be done by implementing changes in fishing methods and gear, including the application of different hook sizes in the hook and line fishing gear. This study examines the impact of different hook sizes on the length at first capture (Lc) and on the bell-shaped maximum selectivity using various selectivity models of the two targeted grouper species (Plectropomus leopardus and Plectropomus maculatus) in the Saleh bay, West Nusa Tenggara, Indonesia. We found that increasing hook size influences the grouper's catch size, increasing the Lc and the bell-shaped maximum selectivity of both species. Based on our findings, hook size can be used as one of the practical tools for grouper management measures, as part of harvest control rules to improve grouper stock in Indonesia.

Stability of ZnAl2O4 Catalyst for Reverse-Water-Gas-Shift Reaction (RWGSR)

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.86-90
    • /
    • 2003
  • Reverse-Water-Gas-Shift reaction (RWGSR) was carried out over the ZnO, $Al_2O_3,\;and\;ZnO/Al_2O_3$ catalysts at the temperature range from 400 to 700 ℃. The ZnO showed good specific reaction activity but this catalyst was deactivated. All the catalysts except the $ZnO/Al_2O_3$ catalyst (850 ℃) showed low stability for the RWGSR and was deactivated at the reaction temperature of 600 ℃. The $ZnO/Al_2O_3$ catalyst calcined at 850 ℃ was stable during 210 hrs under the reaction conditions of 600 ℃ and 150,000 GHSV, showing CO selectivity of 100% even at the pressure of 5 atm. The high stability of the $ZnO/Al_2O_3$ catalyst (850 ℃) was attributed to the prevention of ZnO reduction by the formation of $ZnAl_2O_4$ spinel structure. The spinel structure of $ZnAl_2O_4$ phase in the $ZnO/Al_2O_3$ catalyst calcined at 850 ℃ was confirmed by XRD and electron diffraction.

Progresses and new perspectives of integrated operations for a sustainable industrial growth

  • Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.11-14
    • /
    • 1998
  • 1. Introduction : Research progresses in Chemistry and Chemical Engineering have been made during the last decades with important contributions to the industrial development and to the quality of our life. An interesting case is related to the membrane science and technology continuous impact to innovative processes and products, particularly appropriate for a sustainable industrial growth. Membrane operations have been familiar for many years to biologists and chemists working in their laboratorier or studying biological phenomena. Only recently engineers started to operate in' this area. The preparation of asymmetric CA membranes at University of California, Los Angeles in the early 60s is generally recognized as a crucial moment for membranology (1). Loeb and Sourirajan with their discovery of how to increase significantly the permeability of polymeric membranes without significant changes in their selectivity, made realistic the possibility of their use in large scale operations for desalting brackish and sea water by reverse osmosis and for various other molecular separations in different industrial areas. Reverse osmosis is today a well recognized basic unit operations, togheter with ultrafiltration, crossflow microfiltration,. nanofiltration, all pressure driven membrane processes. Already in 1992 more than 4 milIions m$^3$/day were the total capacity of RO desalination plants and in 1995 more than 180.000 m$^2$ of ultrafiltration membranes were installed for the treatment of wheys and milk (2) (3).

  • PDF