• Title/Summary/Keyword: reverse body bias

Search Result 4, Processing Time 0.019 seconds

The Delay time of CMOS inverter gate cell for design on digital system (디지털 시스템설계를 위한 CMOS 인버터게이트 셀의 지연시간)

  • 여지환
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.195-199
    • /
    • 2002
  • This paper describes the effect of substrate back bias of CMOS Inverter. When the substrate back bias applied in body, the MOS transistor threshold voltage increased and drain saturation current decreased. The back gate reverse bias or substrate bias has been widely utilized and the following advantage has suppressing subthreshold leakage, lowering parasitic junction capacitance, preventing latch up or parasitic bipolar transistor, etc. When the reverse voltage applied substrate, this paper stimulated the propagation delay time CMOS inverter.

  • PDF

Introduction to Industrial Applications of Low Power Design Methodologies

  • Kim, Hyung-Ock;Lee, Bong-Hyun;Choi, Jung-Yon;Won, Hyo-Sig;Choi, Kyu-Myung;Kim, Hyun-Woo;Lee, Seung-Chul;Hwang, Seung-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.240-248
    • /
    • 2009
  • Moore's law has driven silicon technology scale down aggressively, and it results in significant increase of leakage current on nano-meter scale CMOS. Especially, in mobile devices, leakage current has been one of designers' main concerns, and thus many studies have introduced low power methodologies. However, there are few studies to minimize implementation cost in the mixed use of the methodologies to the best of our knowledge. In this paper, we introduce industrial applications of low power design methodologies for the decrease of leakage current. We focus on the design cost reduction of power gating and reverse body bias when used together. Also, we present voltage scale as an alternative to reverse body bias. To sustain gate leakage current, we discuss the adoption of high-$\kappa$ metal gate, which cuts gate leakage current by a factor of 10 in 32 nm CMOS technology. A 45 nm mobile SoC is shown as the case study of the mixed use of low power methodologies.

Leakage-Suppressed SRAM with Dynamic Power Saving Scheme for Future Sub-70-nm CMOS Technology (70-nm 이하 급 초미세 CMOS 공정에서의 누설 전류 및 동적 전류 소비 억제 내장형 SRAM 설계)

  • CHOI Hun-Dae;CHOI Hyun Young;KIM Dong Myeong;KIM Daejeong;MIN Kyeung-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.343-346
    • /
    • 2004
  • This paper proposes a leakage-suppressed SRAM with dynamic power saying scheme for the future leakage-dominant sub-70-nm technology. By dynamically controlling the common source-line voltage ($V_{SL}$) of sleep cells, the sub-threshold leakage through these sleep cells can be reduced to be 1/10-1/100 due to the reverse body-bias effect, dram-induced barrier lowering (DIBL) and negative $V_{GS}$ effects. Moreover, the bit-ling leakage which mar introduce a fault during the read operation can be completely eliminated in this new SRAM. The dynamic $V_{SL}$ control can also reduce the bit-line swing during the write so that the dynamic power in write can be reduced. This new SRAM was fabricated in 0.35-${\mu}m$ CMOS process and more than $30\%$ of dynamic power saying is experimentally verified in the measurement. The leakage suppression scheme is expected to be able to reduce more than $90\%$ of total SRAM power in the future leakage-dominant 70-nm process.

  • PDF

Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies (초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계)

  • Choi Hoon-Dae;Min Kyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.21-32
    • /
    • 2006
  • A new SRAM circuit with row-by-row activation and low-swing write schemes is proposed to reduce switching power of active cells as well as leakage one of sleep cells in this paper. By driving source line of sleep cells by $V_{SSH}$ which is higher than $V_{SS}$, the leakage current can be reduced to 1/100 due to the cooperation of the reverse body-bias. Drain Induced Barrier Lowering (DIBL), and negative $V_{GS}$ effects. Moreover, the bit line leakage which may introduce a fault during the read operation can be eliminated in this new SRAM. Swing voltage on highly capacitive bit lines is reduced to $V_{DD}-to-V_{SSH}$ from the conventional $V_{DD}-to-V_{SS}$ during the write operation, greatly saving the bit line switching power. Combining the row-by-row activation scheme with the low-swing write does not require the additional area penalty. By the SPICE simulation with the Berkeley Predictive Technology Modes, 93% of leakage power and 43% of switching one are estimated to be saved in future leakage-dominant 70-un process. A test chip has been fabricated using $0.35-{\mu}m$ CMOS process to verify the effectiveness and feasibility of the new SRAM, where the switching power is measured to be 30% less than the conventional SRAM when the I/O bit width is only 8. The stored data is confirmed to be retained without loss until the retention voltage is reduced to 1.1V which is mainly due to the metal shield. The switching power will be expected to be more significant with increasing the I/O bit width.