• Title/Summary/Keyword: resultant

Search Result 2,042, Processing Time 0.025 seconds

Differentiation of tidal volume & mean airway pressure with different Bag-Valve-Mask compression depth and compression rate (Bag-Valve-Mask의 사용방법에 따른 일회호흡량과 평균기도압의 변화 연구)

  • Jo, Seung-Mook;Jung, Hyung-Keon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2012
  • Purpose : The purpose of this study is to get basal user guidelines of safer bag-valve-mask application on patient with normal pulmonary patho-physiologic condition. Methods : This study was accomplished by pre-qualified 25 EMS junior grade students. Participants were instructed randomly compress bag to one-third, half and total and also with differesnt compression speed. Resultant tidal volumes and mean airway pressures obtained in RespiTrainer were analysed in relation to the each compression depth and rate. Results : Demographic difference does not affect tidal volume with any compression depth and rate change. Increasing compression depth is correlated with tidal volume increasement at any compression rate and also with mean airway pressure. If the compression depth is same, compression rate change did not affect significantly the resultant tidal volume or mean airway pressure. Conclusion : Hand size, Experience, BMI dose not affect tidal volume. Compress the 1600 ml bag half to total amount is safe way to offer sufficient tidal volume without risky high airway pressure delivery to patient airway who with normal lung patho-physiologic condition.

A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models

  • Luevanos-Rojas, Arnulfo;Barquero-Cabrero, Jose Daniel;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.417-437
    • /
    • 2017
  • This paper shows a comparative study for design of reinforced concrete boundary combined footings of trapezoidal and rectangular forms supporting two columns and each column transmits an axial load and a moment around of the axis X (transverse axis of the footing) and other moment around of the axis Y (longitudinal axis of the footing) to foundation to obtain the most economical combined footing. The real soil pressure acting on the contact surface of the footings is assumed as a linear variation. Methodology used to obtain the dimensions of the footings for the two models consider that the axis X of the footing is located in the same position of the resultant, i.e., the dimensions is obtained from the position of the resultant. The main part of this research is to present the differences between the two models. Results show that the trapezoidal combined footing is more economical compared to the rectangular combined footing. Therefore, the new model for the design of trapezoidal combined footings should be used, and complies with real conditions.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Crystallinity Measurements of Self-Bonded Amorphous PEEK Films (비정질 PEEK 필름의 Self-Bonding에 따르는 결정화도 변화)

  • Jo, Beom-Rae;Kardos, J.L.
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.743-747
    • /
    • 1995
  • The relationship between the variation of crystallinity and the resultant self-bonding strength of PEEK was examined by using DSC in conjunction with the shear test. DSC measurement of the crystallinity produced at different bonding conditions demonstrated that even though PEEK specimens contain the same amount of crystallinity, the resultant self-bonding strength is sensitively dependent on bonding history. It also showed that all crystallization during the bending process occurs only in the healing and annealing stage and no additional crystallization occurs in the cooling stage.

  • PDF

Analysis on the alternating torque characteristics of capacitor motor with windings not in quadrature (비대칭축콘덴서 전동기의 진동토오크 특성의 해석)

  • 오경열
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.41-53
    • /
    • 1977
  • With the equivalent series circuit analyzed aby revolving field theory and drawn by using the equivalent circuit constant ratios in capacitor motor with windings not in quadrature having space harmonics in its magnetic field (the above ratios are the equivalent circuit constants for the fundamental flux to the magnetizing reactance of the circuit), the equation for the alternating torque with twice line freequency in the motor is directly derived, and the alternating torque is measured with the self-made stator vibration angle amplitude measuring apparatus that is composed of a pickup, filter, photoelectric pickoff etc. The measured values satisfactorily compared with computed values. The properties of the alternating torque characteristics for respective harmonic fluxes and the r5esultant alternating torque characteristic, the effects of the alternating torque characteristics for respective harmonic fluxes on the resultant alternating torque characteristic, the effects of the variation in the motor constants and the equivalent circuit constant ratios for the fundamental flux on the alternating torque characteristics for respective harmonic fluxes and the resultant alternating torque characteristic, are made clear, applying the equation. There exist the optimum values of the motor constants and the equivalent circuit constant ratios for the fundamental flux for decreasing the alternating torque, and the value could be determined in design by the method presented in this paper.

  • PDF

Preparation and Evaluation of Vitamine A palmitate Dry Emulsion (비타민 A 팔미틴산 건조 유제의 제조 및 평가)

  • Lee, Jong-Pyo;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.259-266
    • /
    • 2000
  • Vitamin A palmitate, an oily drug which has low chemical stability and is poorly absorbed in the intestine, was formulated into a novel powdered dosage form. This is designated as a redispersible dry emulsion by freeze-drying technique. Before preparing a dry emulsion, vitamin A palmitate oil in solid in water (O/S/W) emulsion with soybean oil and coconut oil using Aerosil 200 as an emulsion stabilizer and polyoxyethylene-polyoxypropylene-blockcopolymer (Pluronic F68) as a surfactant was prepared. The resultants of the stability tests indicated that vitamin A palmitate O/S/W emulsion was improved on increasing the oil content of the formulation. The resultant dry emulsion particles have a good stabilities and free flow properties and readily released the oily droplets to form stable emulsions on rehydration. The drug releasing property from the resultant dry emulsion particles was dependent on factors such as amount of oily carrier(soybean oil) and surfactant(Pluronic F68) formulated. Above 80% of vitamin A palmitate content was released from the dry emulsion for 1 hour. It was deduced that vitamin A palmitate dry emulsion was definitely suitable for oral administration, since small droplets of vitamine A palmitate from the dry emulsion may alter the drug absorption profile resulting in bioavailability enhancement.

  • PDF

Minimization of Torque-Ripple in Switched Reluctance Motors Over Wide Speed Range

  • Dowlatshahi, Milad;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.478-488
    • /
    • 2014
  • Torque pulsation mechanism and highly nonlinear magnetic characterization of switched reluctance motors(SRM) lead to unfavorable torque ripple and limit the variety of applications in industry. In this paper, a modification method proposed for torque ripple minimization of SRM based on conventional torque sharing functions(TSF) to improve maximum speed of torque ripple-free operation considering converter limitations. Due to increasing phase inductance in outgoing phase during the commutation region, reference current tracking can be deteriorated especially when the speed increased. Moreover, phase torque production in incoming phase may not be reached to the reference value near the turn-on angle in which the incremental inductance would be dramatically decreased. Torque error for outgoing phase can cause increasing the resultant motor torque while it would be negative for incoming phase and yields reducing the motor torque. In this paper, a modification method is proposed in which phase torque tracking error for each phase under the commutation added to the other phase so that the resultant torque remained in constant level. This yields to extend constant torque region and reduce peak phase current when the speed increased. Simulation and experimental results for four phase 4 KW, 8/6 SRM validate the effectiveness of the proposed scheme.

Stress Variation Characteristics of a High-Pressure Hose with Respect to Wire Braid Angle (강선의 편조각도에 따른 고압호스의 응력변화 특성)

  • Kim, H.J.;Koh, S.W.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • A high-pressure hose includes rebar layers of the synthetic fiber such as nylon or a steel wire to control internal pressure. The hose assembly is manufactured through the swaging process to clamp the hose into the metal fittings. Usually, the hose behavior is affected by the resultant of the longitudinal and circumferential forces produced by the internal pressure. The rebar layers can appear the most ideal rebar effect when they are arranged to the same direction as the resultant force. The braid angle applied in the rebar layers is an important factor in determining ultimate burst pressure and overall hose life. Failure can occur on the contacted parts of a hose with the metal fittings under severe operating conditions such as high pressure and temperature of the inner fluid. In this paper, the mechanical behavior between the hose and the metal fittings during the swaging process and the stress variation characteristics of a high-pressure hose under a constant applied pressure are analyzed with respect to the braid angle of steel wire using the finite element method.

  • PDF

Effect of Subsequent Annealing Temperature on Dynamic Deformation and Fracture Behavior of Submicrocrystalline Al-4.4%Mg Alloy via Equal-Channel Angular Pressing (ECAP 가공된 초미세 결정립 Al-4.4%Mg 합금의 동적 변형 및 파괴거동에 미치는 후-열처리 온도의 영향)

  • Kim, Y.G.;Ko, Y.G.;Shin, D.H.;Lee, C.S.;Lee, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.427-430
    • /
    • 2008
  • The influence of subsequent annealing treatment on the dynamic deformation and the fracture behavior of submicrocrystalline Al-4.4%Mg alloy is investigated in this study. After inducing an effective strain of 8 via equal-channel angular pressing at $200^{\circ}C$, most of the grains are considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various subsequent heat treatments for 1 hour, resultant microstructures are found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery will be dominantly operative, whereas grain growth is pronounced above $250^{\circ}C$. The results of tensile tests show that yield and ultimate tensile strength decrease, but elongation-to-failure and strain hardening rate increase with an increase in annealing temperatures. The dynamic deformation and the fracture behavior retrieved with a series of torsional tests are explored with respect to annealed microstructures. Such mechanical response is analyzed in relation to resultant microstructure and fracture mode.

  • PDF

Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique (비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조)

  • Ahn, Se-Jin;Kim, Ki-Hyun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF