Browse > Article

http://dx.doi.org/10.12989/csm.2017.6.4.417
###

A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models |

Luevanos-Rojas, Arnulfo
(Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Barquero-Cabrero, Jose Daniel (Institute for Long Life Learning IL3, University of Barcelona) Lopez-Chavarria, Sandra (Institute of Multidisciplinary Researches, Autonomous University of Coahuila) Medina-Elizondo, Manuel (Institute of Multidisciplinary Researches, Autonomous University of Coahuila) |

Publication Information

Abstract

This paper shows a comparative study for design of reinforced concrete boundary combined footings of trapezoidal and rectangular forms supporting two columns and each column transmits an axial load and a moment around of the axis X (transverse axis of the footing) and other moment around of the axis Y (longitudinal axis of the footing) to foundation to obtain the most economical combined footing. The real soil pressure acting on the contact surface of the footings is assumed as a linear variation. Methodology used to obtain the dimensions of the footings for the two models consider that the axis X of the footing is located in the same position of the resultant, i.e., the dimensions is obtained from the position of the resultant. The main part of this research is to present the differences between the two models. Results show that the trapezoidal combined footing is more economical compared to the rectangular combined footing. Therefore, the new model for the design of trapezoidal combined footings should be used, and complies with real conditions.

Keywords

design of trapezoidal combined footings; design of rectangular combined footings; bending moments; bending shear; punching shear;

Citations & Related Records

Times Cited By KSCI :
17 (Citation Analysis)

- Reference
- Cited By KSCI

1 | ACI 318S-14 (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318, New York, U.S.A. |

2 | Agrawal, R. and Hora, M.S. (2012), "Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading", Struct. Eng. Mech., 44(1), 85-107. DOI |

3 | Bowles, J.E. (2001), Foundation Analysis and Design, McGraw-Hill, New York, U.S.A. |

4 | Calabera-Ruiz, J. (2000). Calculo de Estructuras de Cimentacion, Intemac Ediciones, Mexico. |

5 | Chen, W.R., Chen, C.S. and Yu, S.Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., 37(4), 367-383. DOI |

6 | Cure, E., Sadoglu, E., Turker, E. and Uzuner, B.A. (2014), "Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope", Geomech. Eng., 6(5), 469-485. DOI |

7 | Das, B.M., Sordo-Zabay, E. and Arrioja-Juarez, R. (2006), Principios de Ingenieria de Cimentaciones, Cengage Learning Latin America, Mexico. |

8 | Dixit, M.S. and Patil K.A. (2013), "Experimental estimate of values and corresponding settlements for square footings on finite layer of sand", Geomech. Eng., 5(4), 363-377. DOI |

9 | ErzÍn, Y. and Gul, T.O. (2013), "The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test", Geomech. Eng., 5(6), 541-564. DOI |

10 | Gonzalez-Cuevas, O.M. and Robles-Fernandez-Villegas, F. (2005), Aspectos Fundamentales del Concreto Reforzado, Limusa, Mexico. |

11 | Luevanos-Rojas, A. (2012a), "A mathematical model for dimensioning of footings square", I.RE.C.E., 3(4), 346-350. |

12 | Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., 21(6), 699-712. DOI |

13 | Kurian, N.P. (2005), Design of Foundation Systems, Alpha Science Int'l Ltd, New York, U.S.A. |

14 | Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. DOI |

15 | Luevanos-Rojas, A. (2012b), "A mathematical model for the dimensioning of circular footings", Far East J. Math. Sci., 71(2), 357-367. |

16 | Luevanos-Rojas, A. (2013), "A mathematical model for dimensioning of footings rectangular", ICIC Expr. Lett. Part B: Appl., 4(2), 269-274. |

17 | Luevanos-Rojas, A. (2015a), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", J. Innov. Comput. I., 11(4), 1269-1279. |

18 | Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez M.A. (2013), "Design of isolated footings of rectangular form using a new model", J. Innov. Comput. I., 9(10), 4001-4022. |

19 | Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., 52(4), 767-786. DOI |

20 | Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyna-Colomb., 81(188), 199-208. |

21 | Luevanos-Rojas, A. (2015b), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. DOI |

22 | Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., 4(4), 263-279. DOI |

23 | Luevanos-Rojas, A. (2016a), "A mathematical model for the dimensioning of combined footings of rectangular shape", Rev. Tec. Fac. Ing. Univ., 39(1), 3-9. |

24 | Luevanos-Rojas, A. (2016b), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyna-Colomb., 83(196), 149-158. |

25 | Luevanos-Rojas, A. (2016c), "Un nuevo modelo para diseno de zapatas combinadas rectangulares de lindero con dos lados opuestos restringidos", ALCONPAT, 6(2), 172-187. |

26 | Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using finite differences method", Struct. Eng. Mech., 45(2), 169-182. DOI |

27 | McCormac, J.C. and Brown, R.H. (2013), Design of Reinforced Concrete, John Wiley & Sons, Inc., Mexico. |

28 | Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 363-377. DOI |

29 | Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45, 1693-1704. DOI |

30 | Punmia, B.C., Kr.-Jain, A. and Kr.-Jain, A. (2007), Limit State Design of Reinforced Concrete, Laxmi Publications (P) Limited, New York, U.S.A. |

31 | Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. DOI |

32 | Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. DOI |

33 | Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. DOI |

34 | Smith-Pardo, J.P. (2011), "Performance-based framework for soil-structure systems using simplified rocking foundation models", Struct. Eng. Mech., 40(6), 763-782. DOI |

35 | Tomlinson, M.J. (2008), Cimentaciones, Diseno y Construccion, Trillas, Mexico. |

36 | Varghese, P.C. (2009), Design of Reinforced Concrete Foundations, PHI Learning Pvt. Ltd., New York, U.S.A. |

37 | Zhang, L., Zhao, M.H., Xiao, Y. and Ma, B.H. (2011), "Nonlinear analysis of finite beam resting on Winkler with consideration of beam-soil interface resistance effect", Struct. Eng. Mech., 38(5), 573-592. DOI |