• 제목/요약/키워드: response-based learning

검색결과 574건 처리시간 0.024초

SAC 강화 학습을 통한 스마트 그리드 효율성 향상: CityLearn 환경에서 재생 에너지 통합 및 최적 수요 반응 (Enhancing Smart Grid Efficiency through SAC Reinforcement Learning: Renewable Energy Integration and Optimal Demand Response in the CityLearn Environment)

  • 이자노브 알리벡 러스타모비치;성승제;임창균
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.93-104
    • /
    • 2024
  • 수요 반응은 전력망의 신뢰성을 높이고 비용을 최소화하기 위해 수요가 가장 많은 시간대에 고객이 소비패턴을 조정하도록 유도한다. 재생 에너지원을 스마트 그리드에 통합하는 것은 간헐적이고 예측할 수 없는 특성으로 인해 상당한 도전 과제를 안고 있다. 강화 학습 기법과 결합된 수요 대응 전략은 이러한 문제를 해결하고 기존 방식에서는 이러한 종류의 복잡한 요구 사항을 충족하지 못하는 경우 그리드 운영을 최적화할 수 있는 접근 방식으로 부상하고 있다. 본 연구는 재생 에너지 통합을 위한 수요 반응에 강화 학습 알고리즘을 적용하는 방법을 찾아 적용하는데 중점을 둔다. 연구의 핵심 목표는 수요 측 유연성을 최적화하고 재생 에너지 활용도를 개선할 뿐 아니라 그리드 안정성을 강화하고자 한다. 연구 결과는 강화 학습을 기반으로 한 수요 반응 전략이 그리드 유연성을 향상시키고 재생 에너지 통합을 촉진하는 데 효과적이라것을 보여준다.

인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구 (A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm)

  • ;김영진
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.

Emotional Correlation Test from Binary Gender Perspective using Kansei Engineering Approach on IVML Prototype

  • Nur Faraha Mohd, Naim;Mintae, Hwang
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.68-74
    • /
    • 2023
  • This study examines the response of users' feelings from a gender perspective toward interactive video mobile learning (IVML). An IVML prototype was developed for the Android platform allowing users to install and make use of the app for m-learning purposes. This study aims to measure the level of feelings toward the IVML prototype and examine the differences in gender perspectives, identify the most responsive feelings between male, and female users as prominent feelings and measure the correlation between user-friendly feeling traits as an independent variable in accordance with gender attributes. The feelings response could then be extracted from the user experience, user interface, and human-computer interaction based on gender perspectives using the Kansei engineering approach as the measurement method. The statistical results demonstrated the different emotional reactions from a male and female perspective toward the IVML prototype may or may not have a correlation with the user-friendly trait, perhaps having a similar emotional response from one to another.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

컴포넌트 기반 개발을 이용한 LCMS 기반의 e-Learning 시스템 개발 (Developing LCMS-Based e-Learning System utilizing Component-Based Development)

  • 최상균
    • 한국전자거래학회지
    • /
    • 제9권1호
    • /
    • pp.61-81
    • /
    • 2004
  • 학습 컨텐츠 관리 시스템(Learning Contents Management System)은 컨텐츠 관리와 학습자들의 학습과정 관리를 한데 묶어 융통성 있게 활용할 수 있도록 도와주는 시스템이다. e-Learning은 웹 (Web)을 포함하는 전자적 기반을 이용해서 제공되는 모든 교육 체제들을 포함한다. 기존의 e-Learning 시스템은 웹을 기반으로 하여 컨텐츠를 제공하는 단순한 정보 시스템의 구축으로 학습자 및 교수자에게 융통성 없는 시스템이었다. e-Learning 시스템의 핵심은 LCMS를 기반으로 하여 충실하게 작성된 강의 컨텐츠를 기반으로 교수자 및 학습자의 공간대가 형성되는 원격 교육이어야 한다. 본 논문은 컴포넌트 기반 소프트웨어 개발 방법 (Component-Based Software Development)을 이용하여 재사용 가능한 컴포넌트 모듈을 만들고 이를 이용하여 e-Learning 시스템을 구축한다. 그리고 새로운 컨텐츠 묶음을 생성하고, 학습 객체(Learning Object)를 통한 학습 코스를 개발할 수 있도록 한다. 또한 SCORM 표준을 준수하여 강의 컨텐츠를 설계하고 작성하여 학습자에 제공한다. 학습자에 게는 자신의 역량을 관리하는 프로파일을 만들고, 개인의 역량 수준을 측정하고 평가하여 학습자의 역량 수준별로 필요역량을 개발할 수 있는 역량개발 수립을 구축하는 프로토타입을 만들고, 이를 교육 훈련과 연계하는 시스템으로 구축한다.

  • PDF

Torque Ripple Minimization of PMSM Using Parameter Optimization Based Iterative Learning Control

  • Xia, Changliang;Deng, Weitao;Shi, Tingna;Yan, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.425-436
    • /
    • 2016
  • In this paper, a parameter optimization based iterative learning control strategy is presented for permanent magnet synchronous motor control. This paper analyzes the mechanism of iterative learning control suppressing PMSM torque ripple and discusses the impact of controller parameters on steady-state and dynamic performance of the system. Based on the analysis, an optimization problem is constructed, and the expression of the optimal controller parameter is obtained to adjust the controller parameter online. Experimental research is carried out on a 5.2kW PMSM. The results show that the parameter optimization based iterative learning control proposed in this paper achieves lower torque ripple during steady-state operation and short regulating time of dynamic response, thus satisfying the demands for both steady state and dynamic performance of the speed regulating system.

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

인공지능 기반의 자동화된 통합보안관제시스템 모델 연구 (A Study on Artificial Intelligence-based Automated Integrated Security Control System Model)

  • 남원식;조한진
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.45-52
    • /
    • 2024
  • 오늘날 점점 증가하는 위협 환경에서는 보안 이벤트에 대한 신속하고 효과적인 탐지 및 대응이 필수적이다. 이러한 문제를 해결하기 위해 많은 기업과 조직에서는 다양한 보안관제시스템을 도입하여 보안 위협에 대응하고 있다. 그러나 기존 보안관제시스템은 보안 이벤트의 복잡성과 다양한 특성으로 인해 어려움을 겪고 있다. 본 연구에서는 인공지능 기반의 자동화된 통합보안관제시스템 모델을 제안하였다. 인공지능 기술인 딥러닝을 기반으로 하여 다양한 보안 이벤트에 대해 효과적인 탐지와 이를 처리하는 기능들을 제공한다. 이를 위해 모델은 기존의 보안관제시스템 한계를 극복하기 위하여 다양한 인공지능 알고리즘과 머신러닝 방법을 적용한다. 제안된 모델은 운영자의 업무량을 줄이고 효율적인 운영을 보장하며 보안 위협에 대한 신속한 대응을 지원하게 될 것이다.

Multiclass Botnet Detection and Countermeasures Selection

  • Farhan Tariq;Shamim baig
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.205-211
    • /
    • 2024
  • The increasing number of botnet attacks incorporating new evasion techniques making it infeasible to completely secure complex computer network system. The botnet infections are likely to be happen, the timely detection and response to these infections helps to stop attackers before any damage is done. The current practice in traditional IP networks require manual intervention to response to any detected malicious infection. This manual response process is more probable to delay and increase the risk of damage. To automate this manual process, this paper proposes to automatically select relevant countermeasures for detected botnet infection. The propose approach uses the concept of flow trace to detect botnet behavior patterns from current and historical network activity. The approach uses the multiclass machine learning based approach to detect and classify the botnet activity into IRC, HTTP, and P2P botnet. This classification helps to calculate the risk score of the detected botnet infection. The relevant countermeasures selected from available pool based on risk score of detected infection.

An Overview of Learning Control in Robot Applications

  • Ryu, Yeong-Soon
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.6-10
    • /
    • 1996
  • This paper presents an overview of research results obtained by the authors in a series of publications. Methods are developed both for time-varying and time-invariant for linear and nonlinear. for time domain and frequency domain . and for discrete-time and continuous-time systems. Among the topics presented are: 1. Learning control based on integral control concepts applied in the repetition domain. 2. New algorithms that give improved transient response of the indirect adaptive control ideas. 4. Direct model reference learning control. 5 . Learning control based frequency domain. 6. Use of neural networks in learning control. 7. Decentralized learning controllers. These learning algorithms apply to robot control. The decentralized learning control laws are important in such applications becaused of the usual robot decentralized controller structured.

  • PDF