
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

205

Manuscript received May 5, 2024
Manuscript revised May 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.5.23

Multiclass Botnet Detection and Countermeasures Selection

Farhan Tariq1 and Shamim baig2
1 farhantariq2@gmail.com 2 msbaig@myu.edu.pk

Center for Advance Studies in Engineering Muslim Youth University, Islamabad

Summary
The increasing number of botnet attacks incorporating new
evasion techniques making it infeasible to completely secure
complex computer network system. The botnet infections are
likely to be happen, the timely detection and response to these
infections helps to stop attackers before any damage is done. The
current practice in traditional IP networks require manual
intervention to response to any detected malicious infection. This
manual response process is more probable to delay and increase
the risk of damage. To automate this manual process, this paper
proposes to automatically select relevant countermeasures for
detected botnet infection. The propose approach uses the concept
of flow trace to detect botnet behavior patterns from current and
historical network activity. The approach uses the multiclass
machine learning based approach to detect and classify the botnet
activity into IRC, HTTP, and P2P botnet. This classification helps
to calculate the risk score of the detected botnet infection. The
relevant countermeasures selected from available pool based on
risk score of detected infection.
Keywords:
botnet, detection, mitigation, countermeasure, malware,
Multiclass machine learning, NBA, SDN, TSDR, OpenFlow,
Opendaylight, flows.

1. Introduction

The growing number of botnet attacks and evasion
advancement posing threat to inter-connected computer
systems. The advancing idea of malware presenting new
assault vectors. This changing threat landscape turning into
the greatest test to current detection methodologies. The
signature-based botnet detection methods are not
commonsense to adapt up to a quickly changing impression
of botnet attacks. The encrypted command and control
(C2C) correspondence of botnets additionally a bottleneck
for signature-based methodologies. This shifted the
researcher’s interest into behavior-based botnet detection
methods. The behavioral based proposals target both host
level and network level information but the operational
challenges of detection methods that rely on host level
information resulted in a high number of network level
proposals. To counter encrypted C2C communication
traffic the network level proposals start focusing on session
level traffic only.

The bot-malware with administration ability and command
and control component, become one of the most powerful
tools for malicious activities. A machine infected with bot-
malware is perceived as bot machine. The bot machines
attempt to enlist with their C&C servers. This enrollment
built up a network of bot machines and their C&C servers.
The network of bot machines controlled by bot-master is
called botnet. The botnet is for the most part sorted into
centralized and decentralized botnet on premise of their
underline command and control correspondence
mechanism. The IRC and HTTP botnet fall under the
category centralized botnet, as these register back to their
main C&C servers. The P2P botnet is decentralized as these
bot machines first search comparable bot machines to be
available and select a commander from them locally. The
selected bot machine serves as a C&C server for all local
bots. This local C&C server at that point associates back to
central C&C servers for command and control
communications. The botnet life span categories into
recruitment, C&C communication, and attack phase. The
recruitment phase is when a machine was infected with a
bot-malware either directly or update from a previous
malicious code. The C2C communication phase started as
soon as these infected machines try to associates back to
their C2C server for enrollment. In the attack phase bot
machines actively perform actions received from C2C
server for attack.

The botnet detection methods mainly relay on C2C
communication phase as the network communication of bot
machines with their C2C server in this phase have unique
characteristics. This stage likewise assists with recognizing
both bot machine and associated C&C server. These botnet
detection methods encounter with flow collection
challenges and require manual response process due to
segregated control. The introduced delays during the
response part due to the dependency of manual human
intervention making it a difficult job to protect against
malicious actors. The mean time to respond to detected
botnet infection is critical to prevent any damage. The
botnet literature lacking integration of detection and
response process.

The work in this paper, proposed an automated
countermeasures selection approach for detected botnet
infections as an effort to reduced delays introduced due to a
completely manual response process. We use multiclass

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

206

botnet detection approach as proposed in [1] for botnet
detection. This detection method also detects botnet class as
compare to similar previous proposals [4] [5]. In general
countermeasure strategy or reaction, frameworks have a
much wider scope as discussed in [2]. But this work focuses
only on a reaction method of detected botnet infections at
network level considering the SDN dynamic programmable
capability. The work proposed in [3] also exploits SDN
dynamic network programmability to propose an automatic
countermeasure selection against identified vulnerabilities
in monitored virtual machines using the attack graph model
approach.

The countermeasure selection method proposed in this
work uses the severity score computation approach to select
appropriate countermeasures against detected botnet
infections. The proposed method uses a subset of
components of countermeasure strategy including detection
system, countermeasure knowledge, atomic
countermeasure options, and list of actions and select
actions as defined in [2]. The proposed work selects a pool
of countermeasures considering all three botnet types and
list down potential action items against each. The cost and
effectiveness of each actionable item are computed based
on subject matter expertise. These selected
countermeasures, related actionable items, the effectiveness,
and the cost of each countermeasure helps to formulate the
countermeasure matrix. This matrix helps to select the most
appropriate countermeasures based on a calculated severity
score of a detected botnet infection.

The rest of the paper is as follows: Section 2 discussed the
background and related work. Multiclass botnet detection
method overview is provided in section 3. The proposed
countermeasure selection method detail is discussed in
section 4. The section 5 finally conclude the paper.

2. Related Work:

To the best of our knowledge there is no proposals to
automate response function of detected botnet infection.
There are few proposals that try to automate
countermeasure selection for intrusion detection system and
identified vulnerabilities or try to automate response
process in general using SDNs dynamic programmability.

The botnet literature has a rich collection of detection
proposals starting from signature-based approaches towards
more complex machine learning based behavior approaches,
but lacking proposals for integrated response to these
detected botnet infections. The software defined networks
(SDNs) with centralized visibility and dynamic control not
only simplified flow collection but also provide an
opportunity to automate and integrate response task with
detection techniques. The work proposed in [3] first detect
vulnerabilities in Virtual machines method in cloud

infrastructure and then select and apply appropriate
countermeasure to virtually patch the detected vulnerability
using dynamic programmability feature of SDNs. The work
uses attack graph methodology for attack mapping and
correlation for attack analysis and then select
countermeasures based on calculated attack score.

The work proposed by A. Roy [2] present an attack
countermeasure tree structure that helps to access attacks
and related countermeasures together in a tree. The goal of
countermeasures selection method is to minimize the
operational cost and maximize the benefits of implementing
selected countermeasures. To achieve the goal, they work
proposed a few target capacities dependent on greedy,
branching and bound strategies. The work proposed in [15]
apply genetic algorithm to select optimum countermeasures
using Bayesian attack graph methodology.
The work proposed by Moshtapha Chakir in [7], proposed
a real-time risk assessment method for intrusion detection
systems. The work apply pattern matching algorithm to
classify IDS alerts into different classes and then apply risk
assessment based on individual risk score of events. The
alerts are prioritized base of risk assessment results. The
SDN4S [6] proposed automated countermeasures based on
SDNs dynamic programmability. The work proposed
incident specific playbooks that include action and
network-based countermeasures that applied automatically
when a related alert is received. The goal of the work is to
minimize the delays between detection and response
process.

3. Multiclass botnet detection

In this paper, we apply multiclass machine learning based
botnet detection approach as proposed in [1] to detect botnet
and its class as well. The approach divides botnets into three
classes including IRC, HTTP, and P2P based on its
underline command and control communication network
architecture. The approach collects network flows centrally
from SDNs controller and forms bag of flows (BoFs) for
same flows between two end points and call it as flow trace,
Any BoFs having 10 or more flows marked as flow trace of
interest. The flow traces of interest are shipped to feature
computation module where historical flows of the detected
flow trace fetched using time series data repository (TSDR)
plugin of OpenDayLight SDN controller. Feature vector is
then computed from real-time BoFs and batch of historical
flows of the same trace. These features SET from current
and historical network footprint then form a feature vector
that is used by multiple one-class supervised machine
learning algorithms to detect botnet and its class. The figure
1 present the flow diagram of botnet detection method.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

207

Figure 1: Flow diagram of botnet detection [1]

4. Proposed countermeasure selection method

The multiclass botnet detection model detects botnet
infections and ships the alerts to the proposed
countermeasure selection method where each alert contains
detected trace of interest <Source IP, Destination IP,
Destination Port, Protocol>, detection confidence, and
detected botnet class (IRC, HTTP, or P2P). The
countermeasure selection method processed these alerts and

suggests relevant countermeasures. Figure 1 shows the
workflow of the proposed countermeasure selection method.
The proposed work maintains a pool of countermeasures in
form of the matrix comprises of available countermeasures,
corresponding actionable items, effectiveness, and cost of
each countermeasure. The detected alerts are processed
computation. The computed severity score is then used to
select a subset of countermeasures from a pool of available
countermeasures. The proposed method maintains three
files to keep track of user-defined false positives, currently
through an alert analysis function for severity score active
alerts, and potential C&C servers reported by the detection
model. The detail of the countermeasure matrix, Alert
Preprocessing, Alert analysis, and countermeasure selection
functions are provided in the subsequent sections.

4.1 Countermeasure Matrix

This section discussed the countermeasures selected to
form a countermeasure matrix as shown in Table 1. The
selection of countermeasures in this work based on subject
matter expertise with an effort to maintain the generality but
this selection may not cover the complete list of possible
countermeasures against botnet infection. The
countermeasure matrix is formulated to define possible
actionable items against the corresponding countermeasure,
the effectiveness of a countermeasure, and the cost of a
countermeasure in terms of impact on the network if the
countermeasure is applied. The effectiveness and cost
values are key factors during the countermeasure selection
decision. For the scope of this work, we assign static values
to the effectiveness and cost of each countermeasure.

4.2 Alert Preprocessing

The preprocessing function process each
detected alert against user-defined false positives. The
user-defined false positives are a set of flow traces that
are marked as false positive by the user. These flow
traces are added and deleted manually by the user. A
reported flow trace is discarded during alert
preprocessing if its entry is found in user-defined false
positives set. The reported flow trace that gets passed
from the false-positive check, processed further to
check if its entry exists in active-alerts. The alert
preprocessing function maintains an entry of a flow
trace with a timestamp that is forwarded to the alert
analysis function. The lifetime of a flow trace in
active-alerts is 60-minute. All reported flow traces
forwarded to alert analyzer function if their entries do
not exist in any of the user-defined false positive and
active alert list.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

208

4.3 Alert Analysis

The forwarded alerts from the preprocessing stage
processed through alert analysis function to compute related

severity scores. This computation is based on detection

confidence, Local IP weight, and local and public reputation
score of the remote IP of reported alert. The detection
confidence is shipped with each reported alert from the
detection model. The weight of local IPs of the monitored

network is maintained manually in a file. The alert analysis
Figure 2: Flow diagram of Countermeasure selection method

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

209

function maintains a weighted list of remote IPs extracted
from each processed alert to form a set of potential C&C
servers. This set of remote IPs with related reputation scores
used as a local threat intelligence source during severity
score computation.

Table 1: Countermeasure matrix

Sr.
No.

Counter
measure

Actionable
Items

Effecti
veness

Cost

1 Alert forward alert to
SOC

1 1

2 Deep
Packet
Inspection

host_tracker API
call, identify the
closest Switch,
Add rules for
traffic
redirection from
DPI path

2 2

3 Block DIP
for SIP

host_tracker API
call, add a rule to
block DIP for
SIP on the
directly
connected switch

3 3

4 Block DIP
for VLAN
of SIP

host_tracker API
call, add a rule to
block DIP on the
Directly
connected switch

4 4

5 Block DIP
on
network

Block DIP on the
edge switch

4 5

6 Block
Internet
Access of
SIP

host_tracker API
call, add a rule to
block Internet
Access of SIP

3 4

7 Isolate
SIP

host_tracker API
call, add a rule to
Isolate SIP on the
directly
connected switch

4 5

computation. The destination IP of newly processed alert
added into the potential C&C servers list with reputation
score and timestamp if it does not already exist there. The

lifetime of this newly added destination IP is 60-minute
which gets re-initialized if the same destination IP and with
different flow trace is reported during the lifespan. The alert
analysis function assigns a reputation score of “0” to newly
added entry in potential C&C servers list. This reputation
score gets incremented by 0.1 on a scale of 0-1 if the same
destination IP and different flow trace key is reported within
60-minutes. The alert analysis function also queries for the
public reputation of the remote IP of the processed alert.

The severity score of each processed alert is
computed using the following equation

Where
α represent the detection confidence of reported alert
β is the static weight of Source IP added manually for
all local IPs
γ is the local reputation score of remote IP
δ is the reputation score of remote IP queries from a
publicly available threat intelligence source
The mapping of resulted severity score to different
severity levels is defined in Table 2. These levels are
used during the countermeasure selection process.

Table 2: Severity Score to severity level mapping

Severity Score Severity
Level

Severity Score<0.5 low

0.5<Severity Score<0.75 Medium

0.75<Severity Score<0.90 High

0.90<Severity Score Critical

4.4 Countermeasure selection

The countermeasure selection method is designed to
select appropriate countermeasures against detected botnet
infection from the available pool of countermeasures. The
goal of this selection is to maximize the effect and minimize
the impact on the underline network of the computer system.
To achieve this, a countermeasure selection matrix is
formulated based on alert severity level as computed in the
previous section and detected the type of botnet of the alert.
This matrix map countermeasure to a different combination

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

210

of severity level and botnet type which helps to select
appropriate countermeasures for the processed alert. Table
3 shows the mapping between countermeasures and pairs of
severity level and botnet type.

Table 3: Countermeasure selection matrix

Botnet
Type

Severity
Level

Countermeasure

IRC low Alert

HTTP low Deep Packet Inspection, Alert

P2P low Deep Packet Inspection, Alert

IRC Medium Deep Packet Inspection

HTTP Medium Block DIP for SIP, Alert

P2P Medium Block DIP for VLAN of SIP,
Alert

IRC High Block DIP for SIP, Alert

HTTP High Block DIP for VLAN of SIP,
Alert

P2P High Block DIP on the network,
Alert

IRC Critical Block DIP on the network,
Alert

HTTP Critical Block Internet Access of SIP,
Block DIP on the network,
Alert

P2P Critical Isolate SIP

4. Concluding Remarks

In this paper, we presented an automated
countermeasure selection method for detected botnet
infections. The multiclass machine learning based botnet
detection approach as proposed in [1] is used as a
detection module in this work. The detection module
output botnet detection and also identify the class of
detected botnet as IRC, HTTP, or P2P. The proposed
countermeasure selection approach uses these detections
as input and apply risk-based severity score computation.
A countermeasure matrix is formulated having
countermeasures and their respective cost and
effectiveness. The computed severity score divided into
four severity level including low, medium, high, and

critical. These severity level and detected botnet class
helps to select optimum countermeasure from available
pool.

References

[1] F. Tariq and S. Baig, “Multiclass Machine Learning
Based Botnet Detection in Software Defined Networks,”
IJCSNS, vol. 19, no. 3, p. 150, 2019.

[2] Nespoli, Pantaleone, et al. "Optimal countermeasures
selection against cyber attacks: A comprehensive
survey on reaction frameworks." IEEE
Communications Surveys & Tutorials 20.2 (2017):
1361-1396.

[3] Chung, Chun-Jen, et al. "NICE: Network intrusion
detection and countermeasure selection in virtual
network systems." IEEE transactions on dependable and
secure computing 10.4 (2013): 198-211.

[4] F. Tariq and S. Baig, “Botnet classification using
centralized collection of network flow counters in
software defined networks,” Int. J. Comput. Sci. Inf.
Secur., vol. 14, no. 8, p.

[5] F. Tariq and S. Baig, “Machine learning based botnet
detection in software defined networks,” Int. J. Secur.
Its Appl., vol. 11, no. 11, pp. 1–11, 2017.

[6] Koulouris, Theofrastos, M. Casassa Mont, and Simon
Arnell. "SDN4S: Software defined networking for
security." Hewlett Packard Labs, Palo Alto, CA, USA,
Tech. Rep (2017).

[7] Chakir, El Mostapha, Mohamed Moughit, and Youness
Idrissi Khamlichi. "A real-time risk assessment model
for intrusion detection systems." 2017 International
Symposium on Networks, Computers and
Communications (ISNCC). IEEE, 2017.

[8] Chakir, El Mostapha, Mohamed Moughit, and Youness
Idrissi Khamlichi. "A real-time risk assessment model
for intrusion detection systems." 2017 International
Symposium on Networks, Computers and
Communications (ISNCC). IEEE, 2017.

[9] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic
security risk management using bayesian attack graphs,”
IEEE Trans. Dependable and Secure Computing, vol. 9,
no. 1, pp. 61–74, Feb. 2012.

[10] Open Networking Fundation, “Software-defined
networking: The new norm for networks,” ONF White
Paper, Apr. 2012.

[11] Wang, Lingyu, Anyi Liu, and Sushil Jajodia.
"Using attack graphs for correlating, hypothesizing, and
predicting intrusion alerts." Computer communications
29.15 (2006): 2917-2933.

[12] Cichonski, Paul, et al. "Computer security incident
handling guide." NIST Special Publication 800.61
(2012): 1-147.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

211

[13] Don, Moira West-Brown, et al. "Handbook for
computer security incident response teams (CSIRTs)."
(1998).

[14] Wagner, Neal, et al. "Towards automated cyber
decision support: A case study on network
segmentation for security." 2016 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE,
2016.

[15] Poolsappasit, Nayot, Rinku Dewri, and Indrajit Ray.
"Dynamic security risk management using bayesian
attack graphs." IEEE Transactions on Dependable and
Secure Computing 9.1 (2011): 61-74.

[16] Modi, Ajay, and A. Doupé. "Automated Confidence
Score Measurement of Threat Indicators." (2017).

Farhan Tariq received his Master
of Computer Engineering degree
with first class honors from CASE
Pakistan in 2011. He is currently
working towards a Ph.D. degree at
Center for Advanced Studies in
Engineering. His research interests
include network monitoring and

security. Specifically, network behavioral monitoring to
detect the presence of malicious call-backs.

Dr. M Shamim Baig is Ph.D. in
Computer Science from George
Washington University Washington
DC, USA; MS in Industrial
Electronic from Cranfield Institute
of Technology UK. He has more
than 40 years of Academic,
Research & Engineering
Management experience in the field

of Supercomputing, Digital System Design, Networking &
Information Security. He has been Air Vice Marshal in
Pakistan Air Force, Principal Scientific Officer at A.Q.
Khan Research Labs & Director General / Dean “Centre
of Excellence for Cyber Security” at National University of
Science & Technology Islamabad. He is currently a
Professor/ Head of Department of Computer Science at
Muslim Youth University Islamabad. He has published
more than 40 Int’l Journal/ conference papers. He has been
Chair IEEE education activities & Keynote/ invited speaker
at multiple Seminars

