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Abstract: Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased 

interest in recent years. To contribute to this area of research, a machine learning model capable of 

accurately predicting nuclear power plant response with minimal computational cost is proposed.  To develop 

a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate 

a database to train three models and select the best of the three. The BEPU analysis was performed by 

coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The 

Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks’ theorem to obtain a 

statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% 

confidence level. The generated database was used to train three models based on Recurrent Neural 

Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long 

Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering 

approach was utilized to identify requirements, stakeholders, and functional and physical architecture to 

develop this project and ensure success in verification and validation activities necessary to ensure the 

efficient development of ML meta-models capable of predicting of the nuclear power plant response.
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1. Introduction

The 2011 Fukushima Daiichi accident 
emphasized the need for more resilient nuclear 
power plants. An essential element in averting 
such incidents is effective decision-making. 
Given that humans may not always find 
themselves in optimal positions for sound 
decision-making, it becomes crucial to leverage 
all available resources to ensure operators are 
positioned to make the most informed choices 
and avert crises. Consequently, there is a 
pressing demand to create machine-learning 
tools that can support operators in making 
these critical decisions. This project has 
emerged as a response to this necessity and 
represents the initial phase in the development 
of a machine learning tool capable of 
predicting the Nuclear Power Plant (NPP) 
response under accident conditions. 

The application of a Systems Engineering 
approach is crucial for the systematic 
development of a machine learning model 
designed to forecast the NPP response. The 
Systems Engineering approach was found to be 
holistic and useful in integrating different 
elements of the project (Sifat, et al., 2024)[16], 
(Buonocore, et al., 2023)[3], (Mahmoud & Diab, 
2020)[11] and (van Erp, et al., 2023)[17] by 
providing guidelines to manage and execute the 
various tasks while ensuring that the 
overarching objectives are met with acceptable 
quality. This approach emphasizes a holistic 
view of the entire system, including 
requirements, interconnections, objectives, etc.  
Therefore, in the context of this work, the 
'system' pertains to the development of a 
Machine Learning (ML) meta-model capable of 

predicting the response of the Korean 
APR-1400 during an accident scenario.

A system has interconnected elements that 
work together to realize a common objective 
(Sifat, et al., 2024).[16] For this work, these 
elements include processes, stakeholders, 
requirements, etc., all of which are arranged to 
meet the objective. Elements of this work 
consist of conducting conservative safety 
analysis, performing Best Estimate Plus 
Uncertainty (BEPU) analysis to create a 
statistically representative database for the 
development and training of the ML model, and 
lastly, conducting the training and prediction 
phases of the ML model.

2. Literature Review

ML is a subset of modern artificial 
intelligence that identifies hidden patterns by 
handling and learning from large datasets the 
inherent characteristics of the data and hence 
develops a statistical mapping between inputs 
and outputs without any prior 
pre-programming as is the case with 
physics-based modeling (Huang, et al., 2023).[7] 
This project explores the use of Recurrent 
Neural Networks (RNNs), specifically using long 
short-term memory (LSTM), convolutional 
neural networks (CNN), and Gated Recurrent 
Units (GRU)) given their good performance in 
the management of large training data, large 
input features, and long time series (Ramezani, 
et al., 2023).[14] 

ML continues to increase in popularity for its 
ability to adequately predict the response of 
complex systems. Timely forecasting of the 
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system response can be invaluable under 
accident conditions. For this work, ML is 
therefore used to predict the system response 
following a CEA ejection accident.

The CEA ejection accident belongs to a group 
of accidents called reactivity-initiated accidents 
(RIAs). CEA ejection is assumed to be caused by 
mechanical failure resulting in rupture of the 
control element drive mechanism (CEDM), and 
therefore subsequent full withdrawal of the CEA 
and drive shaft caused by pressure of the RCS. 
For conservatism, loss of offsite power (LOOP) 
is assumed to coincide with the turbine trip 
that follows the accident (Korea Hydro and 
Nuclear Power Co., Ltd., 2018).[8] 

Uncontrolled ejection of a CEA results in 
positive reactivity insertion into the reactor 
core. Reactivity is first lessened by Doppler 
feedback, followed by reactor trip. In 
reactivity-initiated accidents, the fuel pellet 
heats rapidly, with a corresponding temperature 
increase. This rapid heating results in 
pellet-cladding mechanical interaction (PCMI), 
which occurs when the fuel expands and 
presses on the cladding inner wall. PCMI causes 
cladding stress and deformation that could 
result in the formation of cracks, crack 
propagation, and fuel failure (Magnusson, et al., 
2018).[12] Parameters of interest for this 
accident are peak fuel rod temperature and fuel 
rod enthalpy, for the evaluation of cladding 
temperature failure, pellet cladding mechanical 
interaction (PCMI) failure, and core coolability.

BEPU is an established accident analysis 
approach that can provide realistic predictions 
compared to the conservative approach; hence, 
resulting in larger safety margins and more 
operational flexibility. BEPU has been used in 

licensing activities of certain accidents; for 
example, at Angra-2 in Brazil, Kozloduy-3 
VVER-440 in Bulgaria, Smolensk-3 RBMK in 
Russia, Balakovo-3 VVER-1000 in Russia, 
Atucha-2 in Argentina, and others (D'Auria, 
2019).[4]

The BEPU approach is guided by The Code 
Scaling Applicability, and Uncertainty (CSAU) 
methodology, starting with the phenomena 
Identification and Ranking Table (PIRT) for the 
rod ejection accident in PWRs developed by a 
group of experts in a project led by the US 
NRC in 2001 (Boyak, et al., 2001).[2] Next, a list 
of uncertain parameters is derived from the 
PIRT with statistical details (range and 
probability density function) gathered from 
published literature for reactive-initiated 
accidents (Marchand, et al., 2018).[12] These 
uncertain parameters are propagated into a 
thermal-hydraulic (TH) model to assess the 
most probable system response.

According to the CSAU methodology, the 
Monte Carlo method should be used to arrive at 
a sample with a probability of 95% and a 
confidence level of 95%. However, for 
computational efficiency, a non-parametric 
method is used [8] following the Gesellschaft 
für Anlagen-und Reaktorsicherheit (GRS) based 
on Wilks’ formula. The proposed method 
acquires the 95/95 tolerance limit by order 
statistics with a sample size that is independent 
of the number of uncertain parameters and 
much smaller than that of Monte Carlo which 
makes Wilks’ method a preferred alternative for 
industrial applications (Han & Kim, 2019).[6] 
Wilks’s 5th order, with a minimum sample 
number of 181 samples was chosen for this 
study based on recommendations of previous 
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studies (Han & Kim, 2019).[6] 

3. Systems Engineering Approach

3.1. Objective and Methodology

The main objective of this work is to develop 
an ML metamodel capable of predicting the 
response of the APR1400 undergoing a CEA 
ejection accident. The system referred to in this 
work is therefore the development of the ML 
meta-model. 

The Systems Engineering (SE) approach is 
utilized to guide the development of the ML 
model by breaking down the tasks associated 
with model development into more manageable 
components. In this context, the Kossiahoff SE 
(Kossiakoff, et al., 2020)[9] method is applied, 
involving four distinct steps:

1. Requirement Analysis
2. Functional Definition
3. Physical Definition 
4. Design Validation 

[Figure 1] SE Method Objective Hierarchy

When applying the Kossiahoff SE method 
(Kossiakoff, et al., 2020)[9] for ML metamodel 
development, the objective hierarchy becomes 
valuable as shown in Figure 1. It serves the 
purpose of delineating objectives, tasks, 
solutions, and feedback relationships among 
tasks, with the ultimate aim of guaranteeing 
high-quality outcomes from the system. 

3.2. Work Breakdown Structure

A work breakdown structure with the 
following activities was developed:

1. Develop a TH model of the APR-1400 
undergoing CEA ejection accident 
scenario.

2. Validate the steady-state response of the 
TH model using conservative assumptions.

3. Validate the transient response of the TH 
model against the Design Control 
Document, DCD.

4. Develop an uncertainty quantification 
framework by coupling the validated TH 
model with DAKOTA.

5. Start with PIRT to identify key uncertain 
parameters.

6. Propagate uncertain parameters into the 
TH model.

7. Analyze the uncertainty and report the 
BEPU results.

8. Develop three ML meta-models.
9. Train, validate, and test the three ML 

models using results from uncertainty 
quantification.

10. Analyze the ML models results to select 
the best model.

11. Deploy the ML model.
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3.3. Stakeholder Identification

Identification of interested and affected 
parties is paramount from the concept to the 
implementation stage of this project. 
Stakeholders for this work refer to individuals 
or groups of people who have a vested interest 
in the development of this ML model. These 
stakeholders have specific needs, expectations, 
concerns, or interests related to this project. 

This project is undertaken as a research 
project at a university, therefore stakeholders 
interested in this work are predominately 
researchers, the university, and the scientific 
community.  A list of stakeholders was 
identified and described in Table 1.

<Table 1> Stakeholders

Stakeholder Justification

University 

Researchers

- Interests in simulations as 

this work can influence 

their projects. 

- Team members: shared 

knowledge of codes and 

analysis. 

- For review and advice 

relating to the development 

of this work

University - To provide tools to 

perform the work

- To sponsor the work

- Publication of research

External 

stakeholders

Stakeholders who may be 

interested in the results of 

the project. These include:

- Utility companies

- Scientific journals

- Nuclear regulator

- Researchers and scientists

3.4. Requirement Analysis

Requirement analysis is essential in 
identifying both the functional and 

non-functional requirements of the system and 
establishing the scope of the project. This 
phase aids in ensuring that the system is 
designed and implemented to meet the 
expectations of stakeholders and users, 
ensuring it achieves the necessary performance 
and quality standards.

The requirements for development of an ML 
model will be divided into mission requirements 
and component requirements, i.e., ML 
Development requirements.

<Table 2> SE Requirements

Requirement Description

Mission 

requirements

The ML model shall predict 

NPP response with good 

accuracy.

ML Development 

requirements

- Three RNN models shall 

be trained and evaluated 

for performance. 

- The best model shall be 

used to predict NPP 

response with an accuracy 

of more than 90%

3.4.1. Mission Requirements 

In the systems engineering approach, the 
mission sets the foundation for the system 
development lifecycle. The project's overall 
mission is to develop an ML meta-model that 
can accurately predict NNP response 
undergoing a CEA ejection accident. 

As stated in Table 1, university researchers 
may have an interest in the development of the 
ML model as this project could support 
research in the area of nuclear safety. For 
safety analysis determining the optimal time to 
deploy emergency operating procedures, or 
high level candidate actions within the severe 
accident management guidelines to prevent 
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reactor pressure vessel breach, can be assisted 
via a robust ML tool that can assist the 
operators, and provide confidence that the 
correct actions are taken. Having an ML model 
that can predict the NPP response with good 
accuracy will enhance accident mitigation work 
by providing a tool that can expedite 
decision-making for operators during severe 
accidents or prevention thereof. Furthermore, 
researchers provide support for this work by 
documenting their findings and providing a 
body of knowledge on system codes and 
research methodologies available for this type 
of research.

The university has a vested interest as this 
work can play a fundamental role in fulfilling 
its mission and contributing to nuclear safety 
research. Universities help create knowledge 
and advancement in research in the nuclear 
industry and allow advancement of people’s 
understanding of the nuclear field, stay current 
on new developments, attract talent, and solve 
nuclear safety problems.  Having an ML model 
that can predict NPP response accurately and 
reliably can only improve the standing of the 
institution and advancement of the tools that 
are currently used in the nuclear industry.

Stakeholders that are external to the 
university, such as utility companies, and 
nuclear regulators are interested in the 
development of a ML model capable of 
predicting NPP response because this tool has 
the advantage of enhancing the safety, 
efficiency, and reliability of nuclear power 
plants. Some advantages of this tool include 
assisting nuclear operators to meet regulatory 
requirements.

Utility companies are interested in the 

development of this tool because it offers the 
potential to improve safety, increase efficiency, 
and optimize various aspects of plant 
operations. By leveraging the capabilities of ML, 
utility companies can enhance the overall 
performance and reliability of nuclear power 
plants.

Scientific journals, scientists, researchers, and 
others may be interested in this work because 
it has scientific value, it adds to the body of 
work done on this technology. This interest is 
similar to that of the university and researchers. 

3.4.2. ML Development Requirements

The ML development requirements or 
component requirements refer to what is 
needed to develop the ML model. For this work 
to be a success, three key steps are necessary. 
First is developing a thermal hydraulic (TH) 
model, then performing BEPU analysis for the 
CEA Ejection accident on the APR-1400 NPP, 
and finally developing an ML meta-model to 
predict the transient response of the plant. 

The CEA ejection accident is analyzed for the 
APR1400 using the best estimate code, 
RELAP5/SCDAPSIM/MOD3.4. The uncertainty 
quantification framework is developed by 
coupling RELAP5/SCDAPSIM/MOD3.4 with the 
statistical software, DAKOTA. The database 
collected from DAKOTA is subsequently used 
for training and validation of the machine 
learning models. Once trained, the machine 
learning (ML) model is used to predict the NPP 
response.

Three RNNs that are closely related must be 
tested and the best one selected for its ability 
to accurately predict NPP response at the 
lowest computational cost. For this reason, 
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three RNNs were chosen for this work, LSTM, 
GRU, and a combination of CNN and LSTM. 

3.5. Functional Architecture

For the successful execution of the project, it 
is indispensable to develop the system 
architecture reflecting both physical and 
functional details. 

The system architecture for this work follows 
the three elements contained in the 
development of the ML model. Functional 
architecture is necessary in developing criteria 
for evaluation for each of the steps of the 
system. As shown in Figure 2, three main 
functions are proposed. 

The first function is the TH modelling, which 
must have sufficient credibility. This entails 
modelling the accident to replicate the design 
of the APR1400 as documented in the DCD, this 
includes steady state and transient validation.

[Figure 2] Functional Architecture

The second function is the uncertainty 
quantification. For this function, the evaluation 

criteria are meeting the USNRC 95/95 rule 
using Wilks’ 5th order formulae. 

Lastly, the ML development function of this 
work entails training three ML models. These 
models must all be trained on the same dataset, 
and their performance evaluated and compared. 
The result of this step must be prediction 
accuracy of above 90% with the lowest 
computational cost. 

3.6. Physical Architecture

The physical structure of the proposed three 
RNNs is presented below for each of the three 
ML meta-models.  

3.6.1. Long Short-Term Memory (LSTM)

As stated earlier in this paper, the LSTM 
model belongs to a group of RNNs, and as is 
commonly known, RNNs have input, hidden, 
and output layers, where the output of a layer 
is saved and fed back into the input for it to 
predict the output layer. RNNs were created to 
solve issues of feed-forward neural networks 
such as not being able to manage sequential 
data (Qian & Liu, 2023)[13], i.e. inability to 
memorize input and only being able to process 
one input. LSTM is distinguished from the 
generic RNN by its use of gates (forget, update, 
and output) to manage the data. The functions 
of these gates comprise: discarding undesired 
information from the previous state and output 
of the upper hidden layer, updating the current 
state by controlling the information to be 
added to the next state from the previous 
hidden state, and filtering out desired and 
undesired information that will be reproduced 
by the output gate, respectively (Qian & Liu, 
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2023)[13] (Agga, et al., 2022)[1] (GitHub, 
2023).[5] LSTM has shown reasonable capability 
in multivariate times series forecasting (Qian & 
Liu, 2023)[13], however, there are issues of 
vanishing and exploding gradients even though 
the model does allow easy modeling of 
dependencies (GitHub, 2023).[5]

[Figure 3] LSTM Cell

3.6.2. Gated Recurrent Unit

GRUs are like LSTMs but have two gates 
instead of three: reset and update gates (Qian 
& Liu, 2023).[13] The update gate determines 
the amount of information passed on from the 
previous time step; whereas the reset gate 
decides which information can be eliminated. 
This RNN cell also uses sigmoid and tanh 
activation functions. GRUs, as shown in the 
figure below, have simpler architecture and 
fewer parameters. The basic cell of GRU is 
shown in Figure 4.

[Figure 4] GRU Cell

3.6.3. CNN + LSTM

CNN is a deep learning model that has 
historically been used to find patterns and to 
classify images as it has a grid-like 
two-dimensional topology (Agga, et al., 2022).[1] 
Although this neural network is predominantly 
used to classify images, it can be used for the 
extraction of features such as time series data 
and can apply 1D, 2D, and 3D convolution 
(Nguyen & Diab, 2023).[18]  In CNNs, the input 
is filtered through one convolutional layer, and 
as the input passes through, a weighted 
summation is conducted before passing onto 
the next convolutional layer. The algorithm 
takes the input, assigns weights and biases to 
unique features of the input, learns from these, 
and can differentiate the objects from the 
input. The last fully connected layer extracts 
characteristics of the input, and the input is 
finally labeled by the last dense layer (Shin, et 
al., 2023).[15] CNNs usually use convolution and 
RELU, followed by pooling, and flatten, a fully 
connected layer, SoftMax in the output layer.

The combination of CNN and LSTM in this 
work was chosen because of the robustness of 
hybrid models in managing time series data 
(Agga, et al., 2022)[1], and the increased 
computational efficiency as the CNN layer 
removes noisy data before passing the input 
onto the LSTM model (Nguyen & Diab, 
2023).[18] In this work, the dataset is first 
preprocessed (which includes normalization, 
shaping, and inverse transforming), then passed 
onto the CNN model, followed by LSTM before 
being transformed back into the desired values 
as is illustrated in Figure 5.
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3.7. ML Model Development 

The database generated from the uncertainty 
quantification step of this work is used for the 
training, validation, and testing of three ML 
Meta models. This section outlines the process 
used to perform the ML prediction and follows 
the process in Figure 6.

[Figure 6] ML Model Workflow

The first step is to select key input variables 
for the ML models. For this work, 14 variables 
from the transient response were selected, i.e., 
power, hot channel power (HC_PWR), average 
channel power, average channel heat flux 
(AC_HF), hot channel heat flux (HC_HF), 
average channel fuel centerline temperature 
(AC_centre), hot channel fuel centerline 
temperature, average channel fuel clad 

temperature (AC_CLAD), hot channel fuel clad 
temperature (HC_CLAD), average channel fuel 
radial temperature (AC_RADIAL), hot channel 
fuel radial temperature (HC_RADIAL), total 
reactivity (REACT), Doppler reactivity and 
scram.

The covariance matrix below was used to 
inform the relationship commonalities between 
the variables. As shown in Figure 7, not all the 
variables are related in the same manner. The 
coefficient matrix below can be read from 0 to 
100. Positive values indicate that both are 
directly proportional, so when one increases 
the other increases too e.g., there is a positive 
relationship between power and scram; while 
negative values indicate that when one value is 
increasing, the other is decreasing, e.g., there is 
an inverse relationship between the Doppler 
reactivity and average channel heat flux. Values 
close to zero indicate that there is no 
relationship between the variables; whereas 
high values indicate a strong relationship.

The next step involves the selection of 
training and testing data. As is common 
practice in supervised learning, the training 
dataset is used to fit the model, which simply 
means adjusting weights and biases applied to 
the data as it passes through the network so 

[Figure 5] CNN + LSTM Cell
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the ML model can learn from the dataset. The 
validation dataset is used to evaluate how well 
the machine learns, then finally the testing 
dataset is used to predict the NPP response. For 
this work, the data split was 80% for training 
data of which 20% is used for validation and 
20% for testing.

[Figure 7] Covariance Matrix for all Variables

The following step is data pre-processing. 
The standard scaler function was used to 
transform the variables in the dataset to the 
same scale. Initially, the dataset was not scaled, 
and it was clear that large values from 
temperature variables were dominating the 
model, making it inaccurate. Scaling the dataset 
to a consistent scale made the model more 
accurate and effective in predictions. This step 
was followed by creating a dataset with 
dependent and independent variables, i.e., here 
a dataset of y and x was created. The last step 
of preprocessing was shaping the dataset, as 
the model expects a specific shape (i.e., 
samples, time steps, and features) for it to run.

Once preprocessed, the dataset was fed into 
the ML model. The hyper-parameters in Table 
3 were used for each of the models. The 
hyper-parameters were selected guided by the 
open literature and confirmed by trial and error 
following the common practice.

<Table 3> ML Model Hyper-Parameters

The training process was followed by model 
evaluation. Several model performance metrics 
were used in this work; specifically, the Mean 
Absolute Error (MAE), Mean Square Error (MSE), 
Root Mean Square Error (RMSE), coefficient of 
determination (R2), and prediction accuracy. It 
is important to observe the error during 
training using more than one metric as some 
metrics may be more sensitive to outliers than 
others. It is worth noting that all three error 
metrics, MAE, MSE, and RMSE were reasonably 
low for this work (which is desirable). 

MAE monitors the averaged absolute error 
between the actual values of the dataset and 
the predicted value, it is demonstrated using 
Eq.1. MSE is the square of the error between 
the actual and predicted value as illustrated 
using Eq.2. This error penalizes larger errors 
compared to smaller ones because of squaring. 
The RMSE returns the square root of MSE while 

Parameter GRU LSTM CNN+LSTM

Optimizer Adam Adam Adam

Activation 

function
Relu Relu Relu

Kernel 

regularizer
L1(1´10-6) L1(1´10-6) L1(1´10-6)

Epoch 40 40 40

Batch size 100 100 100

Hidden 

layers
1 1 2

Learning rate 1 1 1

Input shape (81935,10,13) (81935,10, 13) (81935,10,13)
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still penalizing higher errors, as is denoted by 
Eq.3.

(1)

(2)

(3)

The R2 monitors the variance in the 
dependent variable, it shows how well the 
predicted values fit the actual values. The 
prediction accuracy was calculated by dividing 
the average of the predicted values by the 
actual values and multiplying by 100 to get a 
percentage. Ideally, values for MAE, MSE, and 
RMSE should approach 0, while R2 and 
accuracy should approach 1 and 100%, 
respectively.

3.8. Verification and Validation

Verification and validation are required to 
ensure that requirements are met. This work 
had two requirements, mission (the ML model 
shall predict NPP response with good accuracy), 
and ML development requirements (three RNN 
models shall be trained and evaluated for 
performance and the best model shall be used 
to predict NPP response with the accuracy of 
more than 90%). 

Both the mission requirements as well as the 
ML development requirements were met: all 
three ML that were developed in this work are 
capable of predicting the NPP response with 
reasonable accuracy. 

3.8.1. ML Development Result 

As explained in section 3.7, the model 

performance was monitored to ensure that the 
model learns as expected. Training and 
Validation loss functions were monitored for 
the Core Power, Hot Channel Power, Average 
Core Heat Flux, and Hot Channel Heat Flux, the 
results are shown in Figure 8.

As shown in Figure 8, the model performed 
adequately. The loss starts high and drops 
significantly, then maintains a low loss for 
training and validation. The model also does 
not show underfitting or overfitting. As 
explained in Section 3.7, it is important to 
monitor the error using more than one metric 
for model performance as listed in Table 4. 

Test data that was kept aside from the BEPU 
dataset, described in Section 3.7, and deployed 
to predict the NPP response, as can be seen in 
Figure 9, the proposed models predicted the 
NPP response reasonably well.
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[Figure 8] ML Loss

<Table 4> ML Performance

Parameter ML 
Model MSE MAE RMSE R2 Accuracy 

(%)

Average 
Power

LSTM 0.001 0.008 0.035 0.999 94.50
GRU 0.003 0.013 0.006 0.997 93.32

CNN+
LSTM 0.001 0.017 0.032 0.999 91.72

Max. 
Power

LSTM 0.003 0.010 0.055 0.997 94.08
GRU 0.003 0.020 0.057 0.997 94.28

CNN+
LSTM 0.003 0.007 0.053 0.999 94.99

Average 
Heat Flux

LSTM 0.004 0.006 0.063 0.996 97.38
GRU 0.004 0.010 0.063 0.996 95.03

CNN+
LSTM 0.004 0.009 0.062 0.996 93.10

Max. 
Heat Flux

LSTM 0.003 0.020 0.050 0.997 91.13
GRU 0.001 0.010 0.033 0.999 94.34

CNN+
LSTM 0.001 0.010 0.032 0.999 94.17

The LSTM outperformed GRU and the hybrid 
model of CNN+LSTM for 3 of the 4 parameters 
by a small margin. The downside of LSTM is 
slow training while GRU showed the highest 
error. The computational efficiency of LSTM 
and GRU were similar. The hybrid CNN + LSTM 

is deemed the most competent, albeit at a 
slightly lower accuracy.

[Figure 9] ML Prediction Results
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Conclusion

This project used the Systems Engineering 
approach to guide the development of an ML 
meta-model capable of predicting the response 
of APR-1400 NPP under the CEA ejection 
accident using three RNNs (LSTM, GRU, and 
CNN+LSTM). The SE method was used from 
concept to implementation stage. 

First a TH model for the CEA ejection 
accident on APR-1400 was developed, followed 
by a BEPU analysis, and finally the ML was 
developed and trained to accurately predict the 
NPP response. 

While beneficial throughout the entire 
project lifecycle, it is crucial to initiate the 
process of defining the project's needs, 
stakeholders, requirements set by stakeholders, 
components, and expected quality as early as 
possible. Establishing these aspects in advance 
ensures the availability of a guiding framework, 
particularly in moments of confusion. This 
project demonstrated a systematic process to 
ensure project quality, and served as a reliable 
guide, by outlining expectations at each stage 
of the project. 

The SE approach was found to be an 
invaluable tool for organization, management, 
and planning and hence ensuring the efficient 
execution of high quality work within the 
available resources and imposed timelines. 
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