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Abstract 
 

It is a challenging problem to search the intended images from a large number of candidates. 
Content based image retrieval (CBIR) is the most promising way to tackle this problem, where 
the most important topic is to measure the similarity of images so as to cover the variance of 
shape, color, pose, illumination etc. While previous works made significant progresses, their 
adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning 
method on the basis of probabilistic generative model, i.e., probabilistic latent semantic 
analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, 
based on PLSA. Then, the parameters are determined through simultaneously maximizing the 
log likelihood function of PLSA and the retrieval performance over the training dataset. The 
main advantages of this work are twofold: (1) deriving similarity measure based on PLSA 
which fully exploits the data distribution and Bayes inference; (2) learning model parameters 
by maximizing the fitting of model to data and the retrieval performance simultaneously. The 
proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results 
exhibit promising performance. 
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1. Introduction 

The last decade has seen the increasing popularity of digital images, especially along with the 
development of Internet. How to search images according to users’ intention from a large 
number of candidates has been an important yet challenging problem [1-9]. In real application, 
there are two main cases. The first one is “retrieval by text”, i.e., the users describe their 
intention through keywords and demand images matching these keyworks. This is trackled by 
image annotation tecniques, i.e., assigning keyworks to candidate images and thus convert the 
problem to text matching, which is popular in commercial search engines. The second is 
“retrieval by image” [1, 3, 4, 5], i.e., the useres input a sample image and expect to get those 
images like the input one. The methods for this case is mainly so called image similarity or 
distance learning. In this work, we focus on the second case since it is more descriptive and 
requires no keyword or textural metadata to describe the image. This case is also referred to as 
content based image retrieval (CBIR). Note that, although user click of search engine can 
significantly improve the retrival performance [8-10], we in this work foucs on the visual 
channel and the proposed method can be extended to work with user click information. 

As the most important component of CBIR systems, image similarity or distance measure 
greatly determines the retrieval performance [1, 5]. Noticing the fact that the similarity 
measure and distance measure are technically convertible and functionally equal, we in this 
work stick to similarity measure, but the proposed method could be directly applied to distance 
measure learning. In the technical perspective, similariyt measure has two important factors. 
The first factor is the image feature representation. A satisfied image feature is expected being 
robust to illumination, pose, shape and other variances, and simutaniouly being effective in 
capturing useful information, i.e., reaching balance between robustness and selectivity. It is 
worth noting that the evaluation of feature representation is task-specific. Therefore, it would 
be important to select or learn feature representation under the criterion of the task. The second 
factor is the similarity function which is a function defined over the feautre space, outputing 
large value for a similar pair and small value for a distinct pair. A typical kind of similarity 
measure is the predefined similarity measures [11], such as L1 distance and Euclidean distance. 
This kind of predefined similarity measures, however, are usually not adaptive enough to data 
distribution [1]. Alternatively, similarity learning methods [12-17] have been proposed, to 
improve the adaption ability to data distribution. The method proposed in this work belong to 
this branch.  

Similarity learning methods in general fall to three typical categories, unsupervised method, 
semisupervised method and supervised method. Unsupervsed learning methods [18,19,20] 
seek to find a feature space and a similarity measure for the given data, without taking class 
label into account. The typical methods include subspace based methods, e.g. locally linear 
embedding (LLE) [18], non-negative matrix factorization (NNMF) [19], probabilistic model 
based methods [20, 21, 22, 23, 24, 25]. Among them, probablistic model based similarity 
shown promsing performance and received increasing attention. These methods formulated 
the feature mapping [24, 25] or similarity measure [20, 21, 22] based on the probabilistic 
model. Thus, they inherited the abilities of probabilistic model and exhibited adaption ability 
to data distribution. These methods include probability product kernels [21], Kullback Leibler 
divergence based similarity [22], Fisher kernel [20], free energy score space [24]. These 
methods are useful when the class label is missed or is expensive to otain.  

Semisupervised learning methods [11, 14] make use of both labeled data and unlabeled 
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data, laying somewhere between unsupervised learning and supervised learning. They are 
highly effecitive when the number of labeled data is limited and the number of unlabeled data 
is easy to access. On the other hand, supervised learning methods learn similarity measure by 
exploiting class label, seeking to find a similarity function that outputs large value for images 
with the same labels and outputs small value for images with distinct labels. Popular methods 
include large margin nearest neighborhood (LMNN) [26], local distance metric learning 
(LDML) [12], linear transformation based metric learning (LTML) [27] and discriminative 
Fisher kernel learning [28] etc. These methods however not fully exploit data distribution and 
hidden information which will potentially improve the adaption ability and effectiveness of 
similarity measure.  

To fully exploit data distribution, hidden information and class label for similarity learning, 
we in this paper propose an approach based on probabilistic latent semantic analysis (PLSA) 
[29] and Fisher kernel [20]. The proposed approach, referred to as PLSA-FK, uses 
bag-of-words feature represention for images, where the visual words are quantified from 
local descriptor, and then leverage PLSA to model the distribution of the visual words. On the 
basis of PLSA model, it then derives the Fisher kernel which is a function over the parameters 
and variables of PLSA. To exploit class label, i.e., tuning the similarity measure as well as the 
PLSA model to have good retreival performance, we developed a supervised learning 
approach for the PLSA based Fisher kernel. The motivations of the proposed method are 
twofold. First, exploit the semantic information by means of coupling with PLSA which is 
able to infer topic. Second, exploit the label information which is informative for retrieval. The 
proposed method has three main advantages. First, probabilistic models could well adapt to 
data distribution. Second, PLSA can exploit the ability of Bayes inference. Third, the 
supervised learning method can tune the similarity and model according to the retrieval 
performance.  

The remaining part of this paper is organized as follows. Section 2 revisits the related 
works of similairty learning. Section 3 proposes our approach, PLSA based similarity learning. 
Section 4 experimentally evaluates the proposed approach over the real databases. Section 5 
draws a conclusion.  

2. Related Works 
There are a number of works have contributed to similarity learning [30-33, 14-17] and to 
content based image retrieval [4, 5, 13, 11, 1]. We in this work attempt to make a progress on 
the adaption ability, and thus naturally focus on supervised similarity learning approaches, and 
probabilistic model based approaches. For other related approaches, see references for a 
details. It is worth noting that, similarity learning and distance learning are essentially equal 
because they are convertable. Thus, we in this work treat them as the same notation. 

Supervised similarity measure learning attempts to learn a similarity measure from a set of 
equivalence constraints for image pair within the same class, and inequivalence constraints for 
image pair of the different classes. The similarity measure is determined under the criterion 
that keeps images in equivalence constraints close and images in inequivalence constraints 
separated. A number of recent works attempted to cooperate relevance feedback [3, 30], 
dimensionality reduction [31], Bayesian inference [34] and kernel method [27]. [32] casted the 
problem into a constrained convex optimization problem by minimizing the pairwise distance 
in the same classes so that images of different classes are well separated. Discriminative 
component analysis (DCA) [2] incorporated equivalence constraints for similarity learning. 
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Large-margin nearest neighbor (LMNN) [26] took the class margin into account. SDPM [35] 
formulated Mahalanobis distance learning as a convex optimization problem. Distance metric 
learning with eigenvalue optimization (DML-eig.) [36] casted distance learning problem as a 
eigenvalue optimization problem. [33] learnt local perceptual distance function which is a 
combination of a set of local distance functions. [37] proposed to learn the Mahalanobis 
distance function subject to a set of pairwise constraints, i.e., must-links that associate images 
which must be in the same class and cannot-links that associate images which must be in 
different classes. [38] made ues of context information to learn similarity measures. [39, 16] 
leveraged discriminative learning techniques to learn similarity measure.  

Probabilistic similarity methods formulate explicit feautre space or similarity measure 
based on the quantities of adopted probabilistic models. Probability product kernels [21] used 
the posterior distributions of hidden variables to characterize the samples, and define the 
similarity measure as the expectation of the inner product of the hidden variables, with respect 
to the posterior distribtuions. [22] used distributions to characterize the samples and uses 
Kullback–Leibler divergence over those distributions to measure the distance between 
samples. [23] developed a hierarchical probabilistic model to learn image representation and 
similarity. Fisher score (FS) [20] derived feature mapping by considering how the samples 
affect the model parameters, and defined the similarity, i.e., Fisher kernel, as the inner product 
of the feature mappings of samples. Free energy score space (FESS) [24] and posterior 
divergence (PD) [25] extended Fisher score by exploring more informative measures. These 
approaches are able to exploit information from probabilistic models, they however can be 
further boosted through fully exploiting the class label, by fitting the similarity measure to the 
retrieval performance. Dsicriminative Fisher kernel learning (DFK) [28] extents Fisher kernel 
to cooperate class label, where Gaussian mixture model is used to model the distribution of 
visual features. It does not utiliize semantic level information in an explicit way. 

 

 
Fig. 1. The framework of our proposed approach PLSA-FK. 
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Recently, numerous works introduced a variety of techniques for similarity learning. [40, 6] 
used graph to represent data and formulated similarity learning problem as a graph learning 
problem. [9, 8] exploited user click information in real retrieval systems to boost the retrieval 
performance. [15] learned distance subject to the criterion that the semantic information is 
preserved. [17] proposed to learn the similarity by considering the neighborhood structure. 

The work in this paper is based on the score space methods which have been validated to be 
very competitive in a wide range of applications [24, 25, 28]. The advantages of the proposed 
method are mainly twofold: (1) compared with deterministic similarity learning methods, our 
method fully exploits data distribution information and semantic level hidden variables by 
means of Bayesian inference; (2) compared with probabilistic similarity learning method, our 
method provides a sophisticated way to utilize class label.  

3. Learning Fisher Kernel with PLSA 
In this section, we will proceed to derive the Fisher kernel based on PLSA and propose a 
supervised learning approach for the derived kernel. First, we use PLSA to model the 
distribution of visual words, for its popularity and effectiveness in image modeling [41]. Then 
we derive the Fisher kernel [20] based on PLSA. At last, we propose a supervised learning 
method for Fisher kernel. See Fig. 1 for the illustration and Table 1 for the notations, of the 
proposed method. 

Table 1. Mathematical notations involved in this work 

Notation Definition Notation Definition 
d  document 

1{ , , }ND d d= …  document collection 

w  term  
1{ , , }VW w w= …  dictionary 

z  topic  
1{ , , }KZ z z= …  topic set 

( , )iln w d  frequency of lw  in id  { , }θ α β=  model parameter 

U  weight matrix 1( , , )Cy y y= L  label vector  
,i j  index of sample ,k l  index of topic, word 

3.1. Probabilistic Latent Semantic Analysis 
In this work, we utilize Probabilistic Latent Semantic Analysis (PLSA) [29] to model the 
distribution of images represented in bag of visual words quantized from image features. The 
effectiveness of PLSA in image and text representation has been extensively verified [41].  

PLSA is a probabilistic generative model orignally developped for text analysis [29]. 
Sepecifically, it could discover the semantic topics hidden in documents using the bag of 
words representation. PLSA can be also applied to image analysis, since images can also use 
bag of words representation where an image patch is quantified to a visual word.  

Let 1{ , , }ND d d= …  be a collection of N  documents formed by words from a dictionary 

1{ , , }VW w w= …  of V  terms. The data can be denoted by a V N×  co-occurrence matrix 
where the element ( , )iln w d  is the frequency of a term lw  appeared in a document id . Let 

1{ , , }Kz Z z z∈ = …  be the hidden topic variable associating with each observation which is 
actually the occurrence of a word in a certain document. Let ( )iP d  denote the probability of a 
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certain document id ; ( | )l kP w z  denote the conditional probability of a specific word lw  
conditioned on the hidden topic kz ; ( | )ikP z d  denote the conditional probability of a hidden 
topic kz  conditioned on the document id . Then PLSA can be expressed as follows:  

(1) Choose a document id  according to a probabilistic distribution ( )iP d ;  

(2) Choose a hidden topic variable kz  according to a probabilistic distribution ( | )k iP z d ;  

(3) Generate a word lw  according to a probabilistic distribution ( | )l kP w z . Then we have 
an paired observation ( , )ilw d .  

The joint probability of the above model can be expressed as: 
( , , ) ( | ) ( | ) ( )P w d z P w z P z d P d=                                              (1) 

By marginalizing over the hidden variable z , it gives the marginal distribution, 
( , ) ( , , ) ( ) ( | ) ( | )

z Z z Z
P w d P w d z P d P w z P z d

∈ ∈
= =∑ ∑  

Note that ( ) ( ), ( | )P w d P d P w d= , we have the condition distribution ( | )P w d  as follows, 
( | ) ( | ) ( | )

z Z
P w d P w z P z d

∈
=∑  

In this model, each document is modeled as a mixture of topics, and the word histogram for 
a certain document is composed of a mixture of the histograms corresponding to each topic. 
Especially, each document is a combination of the topic vector.  

Learning this model involves the determination of the mixture coefficients which are 
specific for each document, and involves the determination of the topic parameters shared by 
all documents. To learn the PLSA model, we determine the conditional probabilities ( | )P z d  
and ( | )P w z  by maximizing the following log likelihood function: 

log ( , ) ( , )log ( , )
d D w W

L P D W n w d P w d
∈ ∈

= =∑ ∑                           (2) 
Maximizing this log likelihood function is equivalent to minimizing the Kullback-Leibler 
divergence between the empirical distribution and the parameterized model. This model can 
be effectively learned using Expectation Maximization (EM) algorithm, as described in [29].  

3.2. Fisher kernel based on PLSA 
Having the PLSA model, to derive the Fisher kernel, we first give the variational lower bound 
[42] of the log likelihood function log ( , )P d w θ; , on which the derivation will be simple,  

log ( , ; ) KL( ( ) ( , , ; )) ( )P d w Q z P d w z Fθ θ θ≥ − = −P  
where ( )Q z  is the approximation of the real posterior ( | , )P z d w  and usually shares the same 
parameterizations with ( )P z . Then we have,     

( )

,

,

( ) E [log ( ) log ( , , ; )]

( , ) ( | , )[log ( | , ) log ( | ) ( | )]

( , ) [log log ]

Q z

d w z

kwd kwd kw kdd w k

F Q z P d w z

n d w Q z d w Q z d w P w z P z d

n d w g g

θ θ

β α

= −

= −

= −

∑ ∑
∑ ∑

           (3) 

Given the variational lower bound ( )F θ−  of the log likelihood function log ( , ; )P d w θ , the 
elements of Fisher score is its gradient with respect to the model parameters [20],  

,

( ) ( , ) kwd
d w

kw kw

gF n d wθ
β β

∂ −
=−

∂ ∑                                               (4) 
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,

( ) ( , ) kwd
d w

kd kd

gF n d w
a a

θ∂ −
=−

∂ ∑                                               (5) 

Note that the elements of Fisher score is the expectation over a function of the observed 
variable d , hidden variables z  and model parameters θ , where the hidden variables allow 
Fisher kernel to exploit hidden information and the model parameters make it adaptive to data 
distribution. The complete Fisher score is the combination of those gradients, 

11 1

( ) ( ) ( ) ( )( ) , , , ,
KV d Kd

F F F Fd θ θ θ θ
β β α α

 ∂ − ∂ − ∂ − ∂ −
Φ = , ∂ ∂ ∂ ∂ 

L L                        (6) 

 
The Fisher kernel then can be defined as [20],  

( ) ( ) I ( )T
i j i jK d d d d, = Φ Φ  

where I=E [ ( ) ( ) ]T
d d dΦ Φ  is the Fisher information matrix. In order to exploit class label for 

similiarity learning, we here extend the kernel to the following parameterized form: 
( ) ( ) ( )T

i j i jK d d d U d, = Φ Φ                                                 (7) 
where 1=diag( , , )MU u uL  is a diagonal matrix to be learnt, and mu  weights the importance of 

mΦ , i.e. the m-th element of Φ , to the similarity. In particular, 0mu =  indicates that mΦ  is 
completely non-informative. Given the above parameterized form of Fisher kernel, we will 
show how to determine U in next section. 

3.3. Learning PLSA based Fisher kernel 

Let 1( , , )i i Ciy y y= L  be the label vector of a sample id , where 1ciy =  indicates that the c -th 
label of all C  ones is assigned to the sample id  and 0ciy =  otherwise. Here we consider the 
criterion that sample pairs take high similarity for sample pairs with the same class label, and 
takes low similarity for sample pairs with different class label,  

( , ) ( , ; , )T
i j i j

i j i
J U y y K d d Uθ θ

≠

=∑∑                                     (8) 

where T
i jy y  measures the similarity of two label vectors. 

Given the approximate posterior ( )Q z  over the hidden variable, we seek to minimize the 
objective function ( , )J Uθ  using gradient descent,  

( ) ( )2 2
' ' ' ', ,

( , ) ( , ) ( , )T
i j kwi kw m m j kwj kw m m id w d w

i j ikw

J U y y n d w g u n d w g uθ β β
β

− −

≠

∂  = Φ + Φ ∂ ∑∑ ∑ ∑     (9)

( ) ( )2 2
'' '' '' '', ,

( , ) ( , ) ( , )T
i j kwi kd m m j kwj kd m m id w d w

i j ikd

J U y y n d w g u n d w g uθ α α
α

− −

≠

∂  = Φ + Φ ∂ ∑∑ ∑ ∑  (10) 

( , ) ( ) ( )T
i j m i m j

i j im

J U y y d d
u
θ

≠

∂
= Φ Φ

∂ ∑∑                                    (11) 

where 'm  indexes the element of feature mapping Φ  for kwβ  (Eq. (4)) while ''m  indexes the 
element of feature mapping Φ  for kdα  (Eq. (5)). 

The learning procedure of the proposed approach is the iteration of the E-step and M-step 
(Eq. (9-11)), which is summarized in Algorithm 1.  
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Algorithm 1 Learning Fisher kernel  

1:  input: training set 1{( , )}N
i i id y = ; iteration number T ; learning rate 0γ >  

2:  initialize parameters (0) (0),Uθ  
2:  for 1t =  to T  do 

3:      
1

( | ) ( | )( | , )
( | ) ( | )
l k k i

k i l K
l k k ik

P w z P z dP z d w
P w z P z d

=

=
∑

 

4:      ( ) ( 1) ( , )t t J Uθθ θ γ
θ

− ∂
← −

∂
  

5:      ( ) ( 1) ( , )t t J UU U
U
θγ− ∂

← −
∂

  

6:  end for  
7:  output: ( ) ( ),T TUθ   

 

The learnt Fisher kernel can be embeded to kernel-compatible classifier for classification, 
and the kernel similarity of a pair of samples ,i jd d can be computed following Algorithm 2. 

 

Algorithm 2  Computing Fisher kernel 
1:  input: a pair of samples ,i jd d  

2:  compute posterior 
1

( | ) ( | )( | , )
( | ) ( | )
l k k i

k i l K
l k k ik

P w z P z dP z d w
P w z P z d

=

=
∑

 for id  

3:  compute posterior 
1

( | ) ( | )
( | , )

( | ) ( | )
l k k j

k j l K
l k k jk

P w z P z d
P z d w

P w z P z d
=

=
∑

 for jd  

4:  compute the Fisher kernel similarity using Eq. (7)    
5:  output: ( )i jK d d,   

4. Experiments  
In this section, we will apply the proposed method, i.e., Probabilistic Latent Semantic Analysis 
based Fisher Kernel (PLSA-FK) for image retrieval. The proposed method will be compared 
with several state-of-the-art methods on three real datasets, Corel5K [43], MIRFlickr 25,000 
[44] and Corel30K [45]. 

4.1. Image Representation 
Image feature representation is crucial for CBIR systems due to the great variance of visual 
contents across image datasets. In this work, we ues color SIFT descriptors as the feature for 
its excellent performance which has been extensively validated [46]. Specifically, following 
the recommendation in [46], four color SIFT descriptors (OpponentSIFT, rgSIFT, C-SIFT and 
RGB-SIFT) are adopted. These descriptors are extracted from the image patches given by 
dense sampling and Harris-Laplace point sampling, with spatial pyramid followed.  
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4.2 Performance Measure 
Following the previous works [36, 13, 11], we evaluate the retrieval performance using 
leave-one-out manner. First, a query image is chosen from the test set. Then, search similar 
images from the candidate set according to the adopted similarity or distance measure. Mean 
average precision (MAP) is used to measure the performance of image retrieval. MAP is the 
summarization of the precision-recall curve, where precision is defined as the percentage of 
returned images that contain the same label with the query image in all returned images.  

Let k  be the rank, the precision at cut-off k  can be computed as: 
| {relevant retrieved images of rank or less} |

( )
k

P k
k

=  

Averaging the precision of those relevant returned images gives Average Precision (AP),  

1

1
AP ( ) rel( )N

kN
P k k

=
= ×∑  

where N  is the number of retrieved images, rel( )k  is an indicator function outputting 1 if the 
image at the rank k  is a relevant image and 0 otherwise. MAP is then given by averaging AP 
across all the query images, 

1

1
MAP AP( )Q

q
q

Q =
= ∑  

4.3 Experiments on Corel5K dataset 
To evluate our approach PLSA-FK, we first perform an experiment on Corel5K dataset 

[43]. Corel5k dataset is a subset selecting from Corel Photo Gallery, being composed of 50 
categories, such as beach, tile, wave, food texture, tigers, France, bears, autumn, and tropical 
plants, where each category contains 100 images. It contains 371 word vocabulary. The sizes 
of the images are normlized to 192×128 or 128×192. The sample images are shown in Fig. 2. 
In this experiment, we randomly select 70% samples to form the training set and remain the 
rest as the test set. The training set is used for PLSA-FK learning and the test set is used for 
performance evlauation. For all compared approaches, we measure the average precision for 
each category over the top 20 retrieved images. 

 
 

 
Fig. 2. Sample images from Corel5K dataset 
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We will compare our PLSA-FK with other similarity or distance learning methods. Xing’s 
approach [32] casts the distance measure learning problem to a convex optimization problem. 
Discriminative components analysis (DCA) [2] introduces inequivalence constraints. SDPM 
[35] learns Mahalanobis distance through formulating it as a convex optimization problem. 
DML-eig. [36] learns distance by means of eigenvalue optimization. Large margin nearest 
neighbor (LMNN) [26] learns Mahalanobis distance under the criterion of nearest neighbor 
and large margin. Fisher kernel [20] and Free energy score space (FESS) [24] converts 
similarity learning to feature mapping learning on the basis of probabilistic generative models. 
Its similarity measure is the inner product of feature mapping. Discriminative Fisher kernel 
learning (DFK) [28] learns kernel similarity through exploiting class label.  

For our approach, the number of topics for PLSA is determined through cross-validation 
on the test set. It is set to 120K = in this experiment. For compared approaches, we referred to 
the results for Xing’s [32], DCA [2], SDPM [35], DML-eig. [36], LMNN [26] from literatures, 
and implemented the algorithms of FK, FESS and DFK on the basis of authors’ 
implementations and parameter configurations. 

The experimental results are reported in Table 2. It can be found that, Xing’s approach [32] 
and DML-eig [36] show competitive performance. Meanwhile, for distance measure learning 
approaches, DCA beat SDPM, DML-eig and LMNN. The underlying reason is that DCA 
introduced negative constraints which capture intrinsic structures within samples. And, the 
probabilistic similarity measure learning approach FK and FESS get better results due to the 
exploitation of probabilistic modeling of image distribution. Our approach PLSA-FK, as 
shown in Table 2, achieves the best performance against the compared approaches in most 
cases. Specifically, PLSA-FK approach outperforms FESS by about 2.7%. This improvement 
should be credited to that PLSA-FK utilizes the label information while FESS does not. Also, 
PLSA-FK outperforms DFK about 1.4%.  The main reason is that, compared with GMM, 
PLSA can capture the image attributes and infer the semantic level hidden information better. 
These results demonstrate the effectiveness of the proposed method in image retrieval.  

Table 2. Retrieval performance of all algorithms over Corel5K dataset 

Algorithm MAP (mean average precision) 

Xing [32] 0.307 

DCA [2] 0.325 

SDPM [35] 0.315 

DML-eig [36] 0.309 
LMNN  
[26] 0.310 

FK [20] 0.314 

FESS [24] 0.316 

DFK [28] 0.329 

PLSA-FK (ours) 0.343 
 

Fig. 3 shows an example of our approach PLSA-FK on Corel5k dataset. Given the query 
image (left-top), it returns relevant images and lists the top 11 images in the figure. We could 
find that most results are relevant, and even incorrect results exhibit similarity in both shape 
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and color, which indicates that our proposed approach could potentially capture multiple kinds 
of  information and comprehensively contributes to the retrieval.  

 
Fig. 3. Retrieval results of our approach PLSA-FK. The query image is marked by blue box and the 

incorrect results of top 11 ones are marked by red box. 
 

4.4 Experiments on MIRFlickr dataset 
In real applications, the dataset is usually very large, which requires that the similarity 

measure (1) is scalable and computationally efficient; (2) is able to characterize the semantic 
similarity between images, given the large variance. To evaluate performance of our method 
on large dataset, we experimented on MIRFlickr dataset [44]. The MIRFlickr-25000 dataset 
contains 25,000 samples with high-resolution images and text annotations, collected from 
Flickr which is an online photo-sharing website. The size of the images are normalized to 
500×height where height<500 or width×500 where width<500. See Fig. 4 for sample images. 
For fair comparison, we follow the typical experimental scheme. The dataset is split into two 
parts, 15,000 images for training and the rest 10,000 images for test. We randomly chosen 
1,000 images from the test dataset as queries and remained the rest 24,000 images as the 
gallery. In the gallery, 15,000 images are with text annotations. 

 

 
Fig. 4. Sample images from MIRFlickr dataset 

We compare our proposed method PLSA-FK with several related methods: non-negative 
matrix factorization (NNMF) [19], large margin nearest neighbor (LMNN) [26], free energy 
score space (FESS) [24] and posterior divergence (PD) [25]. NNMF is a state-of-the-art image 
retrieval method on the basis of matrix factorization. LMNN is a supervised distance learning 
method under the criterion of large margin. FESS and PD are probabilistic similarity learning 
methods closely related to our method. For all these compared methods, we used the authors’ 
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suggested settings. For our method, the number of topics of PLSA is set to K=160 according to 
cross validation. 

 
Table 3. The retrieval performance of compared algorithms on MIRFlickr dataset. 

Algorithm MAP (mean averge precision) 

NNMF [19] 0.583 

LMNN [26] 0.586 

FK [20] 0.588 

FESS [24] 0.590 

PD [25] 0.593 

DFK [28] 0.606 

PLSA-FK (ours) 0.619 
 

The experimental results are reported in Table 3. It can be clearly found that, FK, FESS 
and PD outperform NNMF and LMNN. The underlying reason is that, compared with NNMF 
and LMNN, FK, FESS and PD exploit the data distribution more sophisticatedly. Further, our 
method PLSA-FK shows superiority over FESS and PD. The reason accounting for this is that, 
PLSA-FK exploits class label through tuning similarity measure according to performance. 
Again, PLSA-FK outperforms DFK, which benefits from the semantic level information given 
by PLSA. Fig. 5 presents the retrieval results of our method for a query image “flower”. For 
the query image on the left-top, our method  retrieves the relevant images and presents the top 
11 ones in the figure. It can be seen that, 9 retrieved images are relevant. It is interesting to find 
that the 2 unrelevant  images are similar to the query image in shape and pattern, which 
suggests that the results of our approach could give reasonable retrieval results.  

 
Fig. 5. Retrieval results of our proposed approach PLSA-FK. The query image “flower” is highlighted 

by blue box and the incorrect results in top 11 relevant images are highlighted by red box. 
 

4.5 Experiments on Corel30K dataset 
To further evaluate the performance of our proposed approach PLSA-FK on large dataset, 

we experimented on Corel30k [45] for image retrieval. It contains annotated 31,695 images 
(28,525 training and 3,170 testing) with annotations from 950 words. It is worth noting that, 
only a few works, up to now, have experimented on this dataset [47]. This experiment 
compared our proposed approach PLSA-FK with PLSA-WORD [48] and GM-PLSA [47] on a 
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total of 950 keyword sets. PLSA-WORD quantified visual features into discrete words and 
exploited PLSA model [29] for distribution modeling and image retrieving. GM-PLSA is also 
based on PLSA but further cooperate with other models. We refer to the results of 
PLSA-WORD and GM-PLSA. For Fisher kernel [20], free energy score space (FESS) [24] 
and posterior divergence (PD) [25], we implemented them according to authors’ suggestions. 
For our PLSA-FK, the number of topics in PLSA is set to K=180 according to cross validation. 

The overall experimental results are summerized in Table 4. It shows that, for two 
evaluation criterion, our approach PLSA-FK outperforms PLSA-WORD significantly, and 
shows competitive performance with GM-PLSA. It is worth noting that, both PLSA-WORD 
and GM-PLSA are based on PLSA and thus capture some semantic level information. Also, 
our PLSA-FK shows superority over three score methods, FK, FESS and PD. Although they 
exploit semantic level information through PLSA, they do not benefit from the class label 
information. These results are firmly consistent with  the above two experiments, which 
support the advantage of our approach that it can adapt to data distribution and fully exploit 
high-level semantic information hidden in the images. 

Table 4. The retrieval performance on Corel30K  
Algorithms  MAP (All words)  MAP (Words with recall > 0)  

PLSA-WORD [48]  0.14 0.17  

GM-PLSA [47]  0.23 0.28  

FK [20] 0.23 0.27 

FESS [24] 0.24 0.26 

PD [25] 0.22 0.25 

PLSA-FK (ours) 0.26 0.30  

 
4.6 Discussions 

The learning procedure (Algorithm 1) of the proposed method is the iterations of the 
inference step (E-step) and parameter estimation step (M-step). This procedure is relatively 
time consuming to reach convergence. However, this procedure can be greatly sped up by 
means of pretraining, i.e., train PLSA first and use the trained parameter as the initial value of 
Algorithm 1. The computation procedure (Algorithm 2) is highly effective, since it only 
involves two inference steps, and can be realtime. The limitation of applying the method for 
larger dataset, e.g. ImageNet, is the learning procedure. That is, to learn over larger dataset, the 
method should be compatible with incremental learning. In our future work, we will seek to 
develop the incremental algorithm and apply it for larger dataset.  

5. Conclusions 
In this paper, we exploited probabilistic latent semantic analysi (PLSA) for similarity measure 
learning towards content based image retrieval (CBIR). The proposed approach (PLSA-FK) 
derived Fisher kernel based on PLSA and learnt the kernel similarity subject the criterion that 
image pairs with same label have large value and image pairs with different labels have small 
value. Because PLSA models the distribution of visual words, our approach can well adapt to 
data distribution. Further, PLSA infers the topic, thus our method exploits high level semantic 
information of retrieval. The proposed method is applied to image retrieval. The experimental 
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results over three datasets approve the competitive performance of our method as well as its 
scaleablity to large datset. The method, however, can be further optimized for large dataset, 
which remains in the future work.  

References 
[1] A. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, “Content-based image retrieval at the end 

of the early years,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 
12, pp. 1349-1380, 2000. Article (CrossRef Link) 

[2] S. Hoi, W. Liu, M. Lyu, W. Ma, “Learning distance metrics with contextual constraints for image 
retrieval,” in Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 
2072-2078, 2006.  Article (CrossRef Link) 

[3] S. Hoi, M. Lyu, R. Jin, “A unified log-based relevance feedback scheme for image retrieval,” in 
Proc. of IEEE Transactions on Knowledge and Data Engineering, 18(4):509-524, 2006. 
 Article (CrossRef Link) 

[4] F. Faria, A. Veloso, H. Almeida, E. Valle, R. Torres, M. Gonc¸alves, W. Meira Jr, “Learning to rank 
for content-based image retrieval,” in Proc. of ACM conference on Multimedia Information 
Retrieval, pp. 285-294, 2010. Article (CrossRef Link) 

[5] M. Arevalillo-Herr´aez, F. Ferri, J. Domingo, “A naive relevance feedback model for content-based 
image retrieval using multiple similarity measures,” Pattern Recognition, vol. 43, no. 3, pp. 
619-629, 2010. Article (CrossRef Link) 

[6] M. Wang, H. Li, D. Tao, K. Lu, “Multimodal graph-based reranking for web image search,” in Proc. 
of IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4649-4661, 2012. 
 Article (CrossRef Link) 

[7] M. Wang, K. Yang, X.S. Hua, H.J. Zhang, “Towards a relevant and diverse search of social images,” 
in Proc. of IEEE Transactions on Multimedia, vol. 12, no. 8, pp. 829-842, 2010. 
Article (CrossRef Link) 

[8] J. Yu, D. Tao, M. Wang, Y. Rui, “Learning to rank using user clicks and visual features for image 
retrieval,” in Proc. of IEEE Transactions on Cybernetics, vol. 99, pp.2168-2267, 2014.  
Article (CrossRef Link) 

[9] J. Yu, Y. Rui, B. Chen, “Exploiting click constraints and multi-view features for image re-ranking,” 
in Proc. of IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 159-168, 2014.  
Article (CrossRef Link) 

[10] J. Yu, Y. Rui, D. Tao, “Click prediction for web image reranking using multimodal sparse coding,” 
in Proc. of IEEE Transactions on Image Processing, vol. 23, no. 5, pp. 2019-2032, 2014.  
Article (CrossRef Link) 

[11] S. Hoi, W. Liu, S. Chang, “Semi-supervised distance metric learning for collaborative image 
retrieval and clustering,” in Proc. of ACM Transactions on Multimedia Computing, 
Communications, and Applications. vol. 6, no. 3, 2010.  Article (CrossRef Link) 

[12] L. Yang, R. Jin, R. Sukthankar, Y. Liu, “An efficient algorithm for local distance metric learning,” 
in Proc. of the National Conference on Artificial Intelligence, 2006. Article (CrossRef Link) 

[13] L. Yang, R. Jin, L. Mummert, R. Sukthankar, A. Goode, B. Zheng, S. Hoi, M. Satya-narayanan, “A 
boosting framework for visuality-preserving distance metric learning and its application to 
medical image retrieval,” in Proc. of IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 32, no. 1, pp. 30-44, 2010.  Article (CrossRef Link) 

[14] J. Yu, M. Wang, D. Tao, “Semisupervised multiview distance metric learning for cartoon 
synthesis,” in Proc. of IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4636-4648, 
2012. Article (CrossRef Link) 

[15] J. Yu, D. Tao, J. Lic, J. Cheng, “Semantic preserving distance metric learning and applications,” 
Information Sciences, vol. 281, pp. 674-686, 2014. Article (CrossRef Link) 

http://dx.doi.org/10.1109/34.895972
http://dx.doi.org/10.1109/CVPR.2006.167
http://dx.doi.org/10.1109/TKDE.2006.1599389
http://dx.doi.org/10.1145/1743384.1743434
http://dx.doi.org/10.1016/j.patcog.2009.08.010
http://dx.doi.org/10.1109/TIP.2012.2207397
http://dx.doi.org/10.1109/TMM.2010.2055045
http://dx.doi.org/10.1109/TCYB.2014.2336697
http://dx.doi.org/10.1109/TMM.2013.2284755
http://dx.doi.org/10.1109/TIP.2014.2311377
http://dx.doi.org/10.1145/1823746.1823752
https://www.aaai.org/Papers/AAAI/2006/AAAI06-087.pdf
http://dx.doi.org/10.1109/TPAMI.2008.273
http://dx.doi.org/10.1109/TIP.2012.2207395
http://dx.doi.org/10.1016/j.ins.2014.01.025


1438                                                             Lv et al.: Learning Discriminative Fisher Kernel for Image Retrieval 

[16] B. Liu, M. Wang, R. Hong, Z.J. Zha, X.S. Hua, “Joint learning of labels and distance metric,” in 
Proc. of IEEE Transactions on Systems, Man and Cybernetics, vol. 40, no. 3, pp. 973-978, 2010. 
Article (CrossRef Link) 

[17] M. Wang, X.S. Hua, J. Tang, R. Hong, “Beyond distance measurement: constructing neighborhood 
similarity for video annotation,” in Proc. of IEEE Transactions on Multimedia, vol. 11, no. 3, pp. 
465-476, 2009. Article (CrossRef Link) 

[18] S. Roweis, L. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 
290, no. 5500, pp. 2323-2326, 2000. Article (CrossRef Link) 

[19] J.C. Caicedo, J. BenAbdallah, F.A. González, O. Nasraoui, “Multimodal representation, indexing, 
automated annotation and retrieval of image collections via non-negative matrix factorization,” 
Neurocomputing, vol. 76, no.1, pp. 50-60, 2012. Article (CrossRef Link) 

[20] T. Jaakkola and D. Haussler, “Exploiting generative models in discriminative classifiers,” NIPS, pp. 
487-493, 1999. 

[21] T. Jebara, R. Kondor, A. Howard, “Probability product kernels,” in Proc. of Journal of Machine 
Learning Research, vol. 5, pp. 819-844, 2004. 

[22] N. Vasconcelos, “On the efficient evaluation of probabilistic similarity functions for image 
retrieval,” in Proc. of IEEE Transactions on Information Theory, vol. 50, no. 7, pp.1482-1496, 
2004. Article (CrossRef Link) 

[23] C. Schmid, “Constructing models for content-based image retrieval,” CVPR, 2001. 
 Article (CrossRef Link) 

[24] A Perina, M. Cristani, U. Castellani, V. Murino, N. Jojic, “Free energy score spaces: using 
generative information in discriminative classifiers,” in Proc. of IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2011. Article (CrossRef Link) 

[25] X. Li, T.S. Lee, Y. Liu, “Hybrid generative-discriminative classification using posterior 
divergence,” CVPR, 2011. Article (CrossRef Link) 

[26] K. Weinberger, L. Saul, “Distance metric learning for large margin nearest neighbor classification,” 
The Journal of Machine Learning Research, vol. 10, pp. 207-244, 2009. 

[27] P. Jain, B. Kulis, J. Davis, I. Dhillon, “Metric and kernel learning using a linear transformation,” 
The Journal of Machine Learning Research, vol. 13, pp. 519–547, 2012. 

[28] B. Wang, X. Li, Y. Liu, “Learning discriminative Fisher kernel for image retrieval,” in Proc. of 
KSII Transaction on Internet and Information System, vol. 7, no. 3, 2013. 

[29] T. Hofmann, “Unsupervised learning by probabilistic latent semantic analysis,” Machine Learning, 
vol. 42, pp. 177-196, 2001. Article (CrossRef Link) 

[30] J. Su, W. Huang, P. Yu, V. Tseng, “Efficient relevance feedback for content-based image retrieval 
by mining user navigation patterns,” in Proc. of IEEE Transactions on Knowledge and Data 
Engineering, vol. 23, no. 3, pp. 360-372, 2011. Article (CrossRef Link) 

[31] H. Cai, K. Mikolajczyk, J. Matas, “Learning linear discriminant projections for dimensionality 
reduction of image descriptors,” in Proc. of IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 33, no. 2, pp. 338-352, 2011. Article (CrossRef Link) 

[32] E. Xing, A. Ng, M. Jordan, S. Russell, “Distance metric learning, with application to clustering 
with side-information,” NIPS, pp. 505-512, 2002. 

[33] A. Frome, Y. Singer, J. Malik, “Image retrieval and classification using local distance functions,” 
NIPS, 2007. 

[34] L. Yang, R. Jin, R. Sukthankar, “Bayesian active distance metric learning,” arXiv preprint arXiv 
vol. 1206, no. 5283, 2012. 

[35] J. Kim, C. Shen, L. Wang, “A scalable algorithm for learning a Mahalanobis Distance Metric,” 
ACCV, 2010. Article (CrossRef Link) 

[36] Y. Ying, P. Li, “Distance metric learning with eigenvalue optimization,” The Journal of Machine 
Learning Research, vol. 13, pp. 1-26, 2012. 

[37] S. Xiang, F. Nie, C. Zhang, “Learning a mahalanobis distance metric for data clustering and 
classification,” Pattern Recognitio, vol. 41, no. 12 pp. 3600-3612, 2008. Article (CrossRef Link) 

http://dx.doi.org/10.1109/TSMCB.2009.2034632
http://dx.doi.org/10.1109/TMM.2009.2012919
http://dx.doi.org/10.1126/science.290.5500.2323
http://www.sciencedirect.com/science/article/pii/S0925231211004048
http://www.sciencedirect.com/science/article/pii/S0925231211004048
http://dx.doi.org/10.1016/j.neucom.2011.04.037
http://dx.doi.org/10.1109/TIT.2004.830760
http://dx.doi.org/10.1109/CVPR.2001.990922
http://dx.doi.org/10.1109/TPAMI.2011.241
http://dx.doi.org/10.1109/CVPR.2011.5995584
http://dx.doi.org/10.1023/A:1007617005950
http://dx.doi.org/10.1109/TKDE.2010.124
http://dx.doi.org/10.5244/C.22.51
http://dx.doi.org/10.1007/978-3-642-12297-2_29
http://dx.doi.org/10.1016/j.patcog.2008.05.018


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL.9, NO. 4, April 2015                                              1439 

[38] H. Becker, M. Naaman, L. Gravano, “Learning similarity metrics for event identification in social 
media,” in Proc. of ACM international conference on Web search and data mining, pp. 291-300, 
2010. Article (CrossRef Link) 

[39] S. Cao, N. Snavely, “Learning to match images in large-scale collections,” in Proc. of ECCV 
Workshops and Demonstrations, Springer, pp. 259–270, 2012. Article (CrossRef Link) 

[40] M. Wang, X.S. Hua, R. Hong, J. Tang, “Unified video annotation via multigraph learning,” in Proc. 
of IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 5, pp. 733-746, 
2009. Article (CrossRef Link) 

[41] A. Bosch, A. Zisserman, X. Muoz, “Scene classification using a hybrid generative discriminative 
approach,” in Proc. of IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, 
no. 4, 2008. Article (CrossRef Link) 

[42] M. Jordan, Z. Ghahramani, T. Jaakkola, and S. Lawrence, “Introduction to variational methods for 
graphical models,” Machine Learning, vol. 37, pp.183-233, 1999. Article (CrossRef Link) 

[43] P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth, “Object recognition as machine translation: 
Learning a lexicon for a fixed image vocabulary,” ECCV, 2002. Article (CrossRef Link) 

[44] M. J. Huiskes, M. S. Lew, “The MIR Flickr retrieval evaluation,” in Proc. of ACM International 
Conference on Multimedia Information Retrieval, 2008. Article (CrossRef Link) 

[45] G. Carneiro, A. B. Chan P. J. Moreno, and N. Vasconcelos, “Supervised learning of semantic 
classes for image annotation and retrieval,” in Proc. of IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 29, no. 3, pp. 394-410, 2006.  Article (CrossRef Link) 

[46] K. Van De Sande, T. Gevers, C. Snoek, “Evaluating color descriptors for object and scene 
recognition,” in Proc. of IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, 
no. 9, pp. 1582-1596, 2010. Article (CrossRef Link) 

[47] Z. Li, Z. Shi, X. Liu and Z. Shi, “Modeling continuous visual features for semantic image 
annotation and retrieval,” Pattern Recognition Letters, vol. 32, no. 3, pp. 516-523, 2010. 
 Article (CrossRef Link) 

[48] Z. Li, Z. Shi, X. Liu, Z. Li and Z. Shi, “Fusing semantic aspects for image annotation and retrieval,” 
Journal of Visual Communication and Image Representation, vol. 21, no. 8, pp. 798-805, 2010. 
 Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://dx.doi.org/10.1145/1718487.1718524
http://dx.doi.org/10.1007/978-3-642-33863-2_26
http://dx.doi.org/10.1109/TCSVT.2009.2017400
http://dx.doi.org/10.1109/TPAMI.2007.70716
http://dx.doi.org/10.1007/978-94-011-5014-9_5
http://dx.doi.org/10.1007/3-540-47979-1_7
http://dx.doi.org/10.1145/1460096.1460104
http://dx.doi.org/10.1109/TPAMI.2007.61
http://dx.doi.org/10.1109/TPAMI.2009.154
http://dx.doi.org/10.1016/j.patrec.2010.11.015


1440                                                             Lv et al.: Learning Discriminative Fisher Kernel for Image Retrieval 

 
 
Xiong Li received the PhD degree in pattern recognition and intelligence system from 
Shanghai Jiao Tong University, China, in 2013. He is currently an engineer in National 
Computer Network Emergency Response Technical Team, China. His research interests 
include hybrid generative discriminative learning and probabilistic graphical model. 
 
 
 
 
 
 
Qi Lv received the BS and MS degrees in Flight Vehicle Propulsion Engineering from 
Nanjing University of Aeronautics and Astronautics, China, in 2002 and 2005 respectively, 
and PhD degree in mathematics from Zhengzhou University, China, in 2010.  His research 
interests include pattern recognition, statistics and Internet public opinion.    
 
 
 
 
 

 
Wenting Huang received his BS degree in computer science and technology from Jilin 
University, China, in 2004, and the MS degree in computer science from Computer Network 
Information Center of the Chinese Academy of Sciences in 2007. He is currently an engineer 
in National Computer network Emergency Response technical Team of China. His research 
interests include multimedia 


