• Title/Summary/Keyword: response-adaptive design

Search Result 177, Processing Time 0.031 seconds

A Robust and Computationally Efficient Optimal Design Algorithm of Electromagnetic Devices Using Adaptive Response Surface Method

  • Zhang, Yanli;Yoon, Hee-Sung;Shin, Pan-Seok;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This paper presents a robust and computationally efficient optimal design algorithm for electromagnetic devices by combining an adaptive response surface approximation of the objective function and($1+{\lambda}$) evolution strategy. In the adaptive response surface approximation, the design space is successively reduced with the iteration, and Pareto-optimal sampling points are generated by using Latin hypercube design with the Max Distance and Min Distance criteria. The proposed algorithm is applied to an analytic example and TEAM problem 22, and its robustness and computational efficiency are investigated.

Comparison of sequential estimation in response-adaptive designs with and without covariate-adjustment

  • Park, Eunsik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.287-296
    • /
    • 2016
  • Subjects on one side of the covariate population can be allocated to the inferior treatment when there is interaction between the covariate and treatment along with a response-adaptive (RA) design without covariate adjustment. An RA design allows a newly entered subject to have a better chance so that the subject is treated by a superior treatment based on cumulative information from previous subjects. A covariate-adjusted response-adaptive (CARA) is the same as RA design and additionally adjusts the allocation based on individual covariate information. A comparison has been made for the sequential estimation procedure with and without covariate adjustment to see how ignoring significantly interactive covariate affects the correct treatment allocation. Using logistic models, we present simulation results regarding the coverage probability of treatment effect, correct allocation, and stopping time.

Adaptive Design of IIR Digital Filters Using Output Error Method with Adaptive Compensator (적응 보상기를 가지는 출력오차 방법을 이용한 IIR 다지탈 필터의 적응적 설계)

  • 배현덕;이종각
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.685-690
    • /
    • 1987
  • Adaptive design of IIR digiral filters using equation error method has been studied. In this paper, a design technique of IIR digital filters using output error method with adaptive compensator is presented. In computer simulation results, it is shown that flat response characteristic in pass-band, below-40[dB] attenuation characteristic in stop-band, sharf cut-off characteristic in transition-band, and phase characteristic is linearin pass-band.

  • PDF

Analysis on Design Factors of the Optimal Adaptive Beamforming Algorithm for GNSS Anti-Jamming Receivers

  • Jang, Dong-Hoon;Kim, Hyeong-Pil;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • This paper analyzes the design factors for GNSS anti-jamming receiver system in which the adaptive beamforming algorithm is applied in GNSS receiver system. The design analysis factors used in this paper are divided into three: antenna, beamforming algorithm, and operation environment. This paper analyzes the above three factors and presents numerical simulation results on antenna and beamforming algorithm.

A Study on the Adaptive Friction Compensator Design of a Hydraulic Proportional Position Control System (유압 비례 위치제어시스템의 적응 마찰력 보상기 설계에 관한 연구)

  • 이명호;박형배
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • This paper deals with a position control problem of a hydraulic proportional position control system using a nonlinear friction compensation control. As nonlinear friction, stiction and coulomb friction forces are considered and modeled as deadzone and external disturbance respectively. In order to compensate this nonlinearities, we designed the controller which is the adaptive friction compensator using discrete time Model Reference Adaptive Control method in this paper. Digital Signal Processing board is employed for data acquisition and manipulation. The experimental results show that response is slow and steady-state error cannot be compensated properly without friction compensation but this compensator is effective to obtain fast response and good steady-state response.

New Echo Canceller using Adaptive Cascaded System Identification Algorithm (적응 다단 시스템 식별 알고리듬을 이용한 새로운 반향제거기)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, I present a new echo canceller using the adaptive cascade system identification (CSI) method, which a system response is divided into several responses so that each response is adaptively estimated and combined. Echo cancellation is required for a dual-duplex DSL, in order to allow each individual loop to operate in a full duplex fashion. Echo cancellation was one of the most difficult aspects of DSL design, requiring high linearity and total echo return loss in excess of 70 dB. Especially, for a fickle response, if the response is estimated by an adaptive filter, the filter needs more taps and the performance is decreased. But the response is divided into several responses, the computation complexities are decreased and the performance is increased. For the stage constant n, which represents the number of stages, if the response is not divided (n=1), the computation complexity of multiply is $2N^2$. And if the response is divided into two responses (n=2), the computation complexity of multiply is $2N^2$. Also, if n=3, the computation complexity is ${\frac{2}{3}}N^2$. Therefore, it is known that the computation complexity is decreased as n is increased. Finally, this proposed method is verified through simulation of echo canceller for digital subscriber line (DSL) application.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters (T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화)

  • Kim, Jae-Hun;Park, Chang-Woo;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.270-275
    • /
    • 2005
  • This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Doffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach.

A Study on the Statistical Model Validation using Response-adaptive Experimental Design (반응적응 시험설계법을 이용하는 통계적 해석모델 검증 기법 연구)

  • Jung, Byung Chang;Huh, Young-Chul;Moon, Seok-Jun;Kim, Young Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.347-349
    • /
    • 2014
  • Model verification and validation (V&V) is a current research topic to build computational models with high predictive capability by addressing the general concepts, processes and statistical techniques. The hypothesis test for validity check is one of the model validation techniques and gives a guideline to evaluate the validity of a computational model when limited experimental data only exist due to restricted test resources (e.g., time and budget). The hypothesis test for validity check mainly employ Type I error, the risk of rejecting the valid computational model, for the validity evaluation since quantification of Type II error is not feasible for model validation. However, Type II error, the risk of accepting invalid computational model, should be importantly considered for an engineered products having high risk on predicted results. This paper proposes a technique named as the response-adaptive experimental design to reduce Type II error by adaptively designing experimental conditions for the validation experiment. A tire tread block problem and a numerical example are employed to show the effectiveness of the response-adaptive experimental design for the validity evaluation.

  • PDF

Enhanced Adaptive Multi-stage Echo Canceller for High Speed Communications (고속 통신을 위한 향상된 적응 다단 반향 제거기)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.119-125
    • /
    • 2014
  • Echo cancellation is required for a dual-duplex high speed communication such as digital subscriber line(DSL), in order to allow each individual loop to operate in a full duplex fashion. Echo cancellation was one of the most difficult aspects of DSL design, requiring high linearity and total echo return loss in excess of 70 dB. For a long and rapidly changing echo response, if the echo is cancelled by an adaptive echo canceller, the echo canceller needs more taps and its performance is decreased. But if the response is divided into several responses, which response is estimated by a adaptive digital filter and combined, the computation complexities are decreased and the performance is increased. Therefore, the adaptive multi-stage echo canceller is proposed to decrease the computation complexity and increase the performance of echo return loss, in which the echo canceller is composed of several stage echo canceller estimating each divided echo response. Through computer simulations, this multi-stage echo canceller is verified to have merits for high speed communications such as DSL application.