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Abstract
Subjects on one side of the covariate population can be allocated to the inferior treatment when there is

interaction between the covariate and treatment along with a response-adaptive (RA) design without covariate
adjustment. An RA design allows a newly entered subject to have a better chance so that the subject is treated
by a superior treatment based on cumulative information from previous subjects. A covariate-adjusted response-
adaptive (CARA) is the same as RA design and additionally adjusts the allocation based on individual covariate
information. A comparison has been made for the sequential estimation procedure with and without covariate
adjustment to see how ignoring significantly interactive covariate affects the correct treatment allocation. Using
logistic models, we present simulation results regarding the coverage probability of treatment effect, correct
allocation, and stopping time.
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1. Introduction

In a response-adaptive (RA) design (Hu and Rosenberger, 2006; Zelen and Wei, 1995), the infor-
mation collected from previously entered subjects is used and adjusts the allocation probability such
that a newly entered subject can have a better chance for a superior treatment. The RA design serves
ethical needs in performing clinical trials by allocating less numbers of subjects to inferior treatment.
The sequential characteristic in this allocation process makes sequential statistical methods a natural
choice for an RA design.

It is reasonable to additionally incorporate the available individual information of covariates that
may affect responses if it is associated with treatments. We call this a covariate-adjusted response-
adaptive (CARA) design. For example, the the RA design may assign subjects to the wrong treatment
if an interaction exists between treatment and covariate.

A comparison has been made for the sequential estimation procedure with and without covariate
adjustment to see how ignoring significantly interactive covariate affects the treatment allocation. The
rest of this paper is organized as follows. Section 2 describes a sequential estimation procedure for
treatment effect. Section 3 presents simulation studies and real examples applied to logistic models
and Section 4 provides the conclusion.
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2. Sequential estimation of treatment effect in CARA designs

Hu and Rosenberger (2006) show that it is rare to find literature regarding applying stopping rules
proposed for sequential estimation procedure based on CARA design despite the characteristics of
CARA design that make it a natural sequential problem. Chang and Park (2013) proposed a sequen-
tial procedure described in this section to estimate the treatment effect under a CARA design. They
estimated the treatment effects under a CARA design in a clinical trial such that the estimates sat-
isfy a prescribed precision, while the number of subjects allocated to the superior treatment can be
maximized without dimming the quality and efficiency to estimate treatment effects.

Suppose that X1, X2, . . . is the sequence of random treatment assignments, and Xm = (Xm,1, . . . ,
Xm,K), Xm,k ∈ {0, 1}, denotes assignment of treatment k to mth subject. Then Xm,k = 1 for some
k and

∑K
k=1 Xm,k = 1. That is, each subject is allocated to one treatment only. Let Nm,k be the

number of subjects assigned to treatment k during the first m assignments. Suppose that {Ym,k,m =
1, 2, . . . , k = 1, . . . ,K} denotes responses of mth subject to kth treatment. Let ξm be covariates of mth

subject. Assume the allocation function π(· , ·) = (π1(· , ·), . . . , πK(· , ·)) with
∑K

k=1 πk = 1 and 0 < νk =

Eξ[πk(θ, ξ)] < 1, k = 1, . . . ,K. Assume further that for fixed ξ, πk(θ, ξ) > 0 is a continuous function
of θ and is differentiable with respect to θ such that νk(θ̃) = νk(θ) + (θ̃ − θ)(∂νk/∂θ̃)′ + o(∥θ̃ − θ∥1+ζ)
for some ζ > 0, and let ν = (ν1, . . . , νK). Suppose that for each m ≥ 1, the responses and covariates
satisfy

E
[
Ym,k |ξm

]
= µk (θk, ξm) , (2.1)

where µk(· , ·), k = 1, . . . ,K, are known functions, and let V = diag{V1, . . . ,VK} where Vk denotes
the covariance matrix based on equation (2.1). Hence, it follows from equation (2.1) and V that the
method of generalized linear models can be applied according to McCullagh and Nelder (1989).

2.1. The sequential procedure with the stopping rule

The effective sample size for a clinical trial with adaptive design is usually unavailable. Hence, the
sequential method, which allows the sample size to be determined based on the observed information,
is therefore an adequate choice to make an efficient and valid statistical inference. A sequential method
is also a natural choice in an RA design since the treatment allocation process itself is sequential, and
its stopping rule is described in this section.

Assume that θk ∈ Θk ⊆ Rp for k = 1, . . . ,K, and let the parameter space Θ =
∏K

k=1 Θk. Under
the above assumptions (also Condition A of Zhang et al. (2007), Theorem 2.1), asymptotic normality
of θ̂ is proved that as min(Nm,k, k = 1, . . . ,K) goes to infinity. θ̂ is the maximum quasi-likelihood
estimate of θ based on previous observations. See Section A.1 of Chang and Park (2013) for details
on the estimation procedure. The confidence set of θ = (θ1, . . . , θK) is therefore defined to be

Rδ =
{
θ ∈ Θ : n

(
θ̂ − θ

)′
V−1

(
θ̂ − θ

)
≤ C2

α

}
,

where C2
α is the constant such that P(χ2(p · K) ≥ C2

α) ≤ α. Rδ denotes the confidence ellipsoid for
given δ. Suppose we require that the maximum axis of Rδ (δ > 0) be no larger than 2δ to control its
size. The constant δ here is, therefore, used as a measure of precision of the confidence ellipsoid Rδ.
The minimum sample size to achieve this goal is

nΛmin

(
V−1

)
≥ C2

α

δ2 ,
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where Λmin(A) and Λmax(A) are the minimum and maximum eigenvalues of matrix A. Thus the corre-
sponding optimal sample size is

nopt = first n such that n ≥ C2
αΛmax(V)
δ2 . (2.2)

Once V in equation (2.2) is estimated consistently by V̂ , a stopping rule for a fixed size confidence
ellipsoid is suggested:

τδ = first n such that n ≥
C2
αΛmax

(
V̂
)

δ2

= inf

n ≥ n0 : n ≥
C2
αΛmax

(
V̂
)

δ2

 , (2.3)

where n0 ≥ Km0 is the minimum initial sample size and m0 is the initial sample size for each treatment.
Chang and Park (2013) showed that θ̂ have the same asymptotic distribution if we replace the

fixed sample size with a random sample size τδ under the CARA design. They also showed that the
same asymptotic property holds when we are interested in contrasts of parameters. For example, we
are interested in estimating differences between treatment groups rather than estimating individual
treatment effects.

2.2. Treatment allocation

In order to allocate more patients to the better treatment, Bandyopadhyay et al. (2007) suggests using
the utility function below. They used this function under the CARA scheme for the two-stage design
with binary responses.

Treatment allocation is implemented via the utility function, for K treatments defined as

U(p) = log
∣∣∣În+1

∣∣∣ − η


K∑
k=1

pk log

 pk

πk

(
θ̂, ξ

) 
 , (2.4)

where πk(θ̂, ξ) is the estimate of πk(θ, ξ) denoting the estimate of the allocation probability for treat-
ment k up to the current stage n, and În+1 is the estimate of Fisher information with a newly added
subject and n number of subjects up to the current stage. For a given covariate ξ and the current esti-
mate of θ, the optimal allocation rule is to find the vector of allocation probabilities p = (p1, . . . , pK)
that maximize the utility function above. That is, we allocate the (n + 1)th subject to the treatment
that maximizes the utility function; treatment allocation proportions are different so that the better
treatment is allocated more often.

In the utility function, the first term depends on the information matrix. If η = 0, then the new
subject is selected to maximize the Fisher information matrix. However, if η goes to ∞, then the
optimal value of p is to maximize the relative entropy function, the second term of equation (2.4).
Hence, the parameter η can be used to adjust the ethical and efficiency balance. Here we adopt the
idea of a utility function to balance the needs for the estimation precision of treatment effects and
the ethical consideration. Bandyopadhyay et al. (2007) showed some asymptotic properties of pks
theoretically along with some numerical results for various ηs.
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πk(θ̂, ξ), the second term in the utility function, can vary sequentially through Tn at each allocation.
For example, Chang and Park (2013) defined πk(θ̂, ξ) as follows with K = 2 for illustration purposes.

π1

(
θ̂, ξ

)
= J

(
ξ′θ̂1 − ξ′θ̂2

Tn

)
and π2

(
θ̂, ξ

)
= 1 − π1

(
θ̂, ξ

)
,

where J(t) is to be positive non-trivial symmetric with respect to origin and integrable with respect to
the distribution of ξ. Both Tn and η can serve as tuning parameters between efficiency and ethics and
be random depending on the estimate’s precision. Tn can be a function of standard deviation of the
treatment effect estimate based on cumulative observations up to nth subject. Please note that Tn and
η are also tuned by a new covariate ξ of the (n + 1)th subject.

By altering the parameters of the utility function in a utility function, at the beginning stage of
a study, we can make more efforts to improve stability of treatment effects in terms of estimation
precision. Once the estimate of treatment effects becomes stable as the sample size becomes large, we
may assign more attention to the ethical part at the later stage of the study. We also tend to allocate
more patients for the better treatment if there is sufficient information on treatment effects. The utility
function facilitates the need for both the estimating treatment effects and the ethical consideration to
be fulfilled and balanced accordingly.

3. Numerical study

The numerical study compares the performance of the estimate of the treatment effect and the allo-
cation of subjects depending on whether the covariate interacting with treatment group is ignored in
the treatment allocation process or not. In order to apply the sequential confidence estimation proce-
dure, for K treatments, and treatment allocation procedures in Section 2, for illustration purposes, we
consider a binary response case in this study using the logistic model.

3.1. Application to logistic models

Suppose Yk = 1(0) denotes a response variable with success (failure) from a subject assigned to
treatment k for k = 1, . . . ,K. Let µk(θk, ξ) = E[Yk = 1|ξ], and θk = (αk, θ

∗
k). Assume that

logit (µk(θk, ξ)) = αk + θ
∗
kξ, k = 1, . . . ,K. (3.1)

The covariate vector can be redefined as (1, ξ)′, without loss of generality; therefore, we assume that
αk = 0, k = 1, . . . ,K. Suppose there are m0 initial samples for each treatment and assume that we are
at the mth stage with m > Km0.

We then compare the performance of the estimate of the treatment effect and the allocation of
subjects of the two numerical studies to illustrate the importance of considering the covariate in the
treatment allocation when it significantly interacts with the treatment groups.

3.2. Simulation study

The same parameter setup is made to compare our simulation results when the covariate is ignored as
the one by Chang and Park (2013) when the covariate is considered in the treatment allocation.

We assume logistic models with binary responses, treatments A and B and one continuous covari-
ate X. In the logistic models, we assume equal intercepts for both treatments (αA, αB) = (0.1, 0.1) and
regression coefficients (βA, βB) = (−1, 1). The covariate is generated from a mixed normal distribu-
tion with means 2 & − 2 and equal variance 1 with respective probability 0.5 (Figure 1 of Chang and
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Park (2013)). The treatment effect is defined as a function of differences of intercepts and regression
coefficients between the two treatments; therefore, we apply the stopping rule for the contrasts of
parameters, γ = H

′
θ. The transpose of the contrast H is then defined as a matrix with its first row

(1,−1, 0, 0) and its second row (0, 0, 1,−1), and the vector of parameters θ is (αA, αB, θ
∗
A, θ
∗
B)
′
.

Precision δ is assumed 0.3 and initial sample size for each treatment, m0, is assumed as 5, 10,
and 15. Several combinations of tuning parameters Tn and η are assumed: 0.5, 1 and 2 for Tn and
0, 0.1 and 1 for η. Both fixed and varying tuning parameters, Tn and η, are considered; that is, Tn

and η are fixed until the study stops, or vary whenever a new observation is added in a way that Tn

is proportional and η is inversely proportional to the standard deviation of the treatment effect for a
given covariate of a new observation. Findings from simulation studies are as follows (Table 1).

Here are findings from the numerical results when the covariate is ignored; stopping time is 30
if 2m0 = 30, same as the total initial sample sizes, 28 if 2m0 = 20 or if 2m0 = 10 and η = 0.0,
and larger than 28 if 2m0 = 10 and η = 0.1 or 1.0, i.e, stopping time is very early and similar
unless initial sample size is very small with positive η. Varying η or Tn do not make differences in
terms of stopping time. Stopping time is very stable unless initial sample size m0 is small, such as 5,
where regression coefficient estimates are unstable at the beginning stage. The coverage probabilities
of treatment differences cannot be computed because the covariate is ignored. Instead, coverages of
intercept differences are given in Table 1 and are mostly larger than the nominal level 0.95 and become
closer to 1 as the initial sample size m0 gets larger, because there are less additional samples collected
for larger m0.

Correct allocation probabilities are mostly close to 0.5, since the covariate is distributed symmet-
rically on both sides of intersection as in Figure 1 of Chang and Park (2013), in which varying η
or Tn do not make any differences. This confirms that response-adaptive allocation ignoring signifi-
cantly interacting covariate with treatment groups does not play an ethical role by failing to skew the
allocation for better treatment group.

3.3. Illustrative example

It is not easy to find real data obtained from the CARA design; therefore, we present to illustrate
a real example by modifying the study that applied non-response-adaptive design of Van Cutsem et
al. (2009) into the CARA design but employing the same relationship between covariate, treatment
group, and the response variable as one in this work. In this study, patients with epidermal growth
factor receptor-positive colorectal cancer with unresectable metastases were randomly assigned to
receive FOLFIRI either alone or in combination with cetuximab. They conducted a retrospective
subgroup analysis to investigate the influence of the tumor KRAS mutation status on tumor response.
There was a significant interaction between the treatment group and KRAS mutation status for tumor
response when analyzed using the logistic regression model (p = 0.03). The adjusted odds ratio for
a tumor response with cetuximab plus FOLFIRI treatment, as compared to FOLFIRI alone, was 1.40
(95% CI, 1.12 to 1.77; p = 0.004) (Figure 2B in Van Cutsem et al. (2009)). For each KRAS mutation
status, number of tumor responses and the odds ratios along with their confidence intervals are given
in Table 2 (Chang and Park, 2013).

This study was performed under the random treatment allocation; however, we simulate a situation
as if it were done under the CARA design. We assume logistic models with binary tumor responses,
two treatment groups and one binary covariate, KRAS status. In the logistic model, intercepts and
regression coefficients are chosen so that the same odds ratios as in Van Cutsem et al. (2009) are
achieved (Table 2)

The treatment effect is defined as a function of differences of intercepts and regression coefficients
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Table 1: Mean (M) and standard deviation (SD) of stopping time (τδγ ), coverage probability (CP) and correct
allocation probability (CAP) of sequential 95% confidence interval estimation with δ = 0.3 when the covariate
interacting with treatment groups is ignored in the treatment allocation process

Variation τδγ Variation τδγ
m0 Tn η TnV ηV M SD CP CAP m0 Tn η TnV ηV M SD CP CAP
5 0.5 0.0 N N 28 1 1.00 0.50 10 1.0 0.1 Y Y 28 2 0.99 0.50
5 0.5 0.0 Y N 28 1 1.00 0.50 10 1.0 1.0 N N 28 4 0.99 0.50
5 0.5 0.1 N N 36 18 0.96 0.50 10 1.0 1.0 N Y 28 3 1.00 0.49
5 0.5 0.1 N Y 38 21 0.93 0.50 10 1.0 1.0 Y N 28 2 0.99 0.49
5 0.5 0.1 Y N 36 16 0.96 0.50 10 1.0 1.0 Y Y 28 2 1.00 0.49
5 0.5 0.1 Y Y 35 15 0.97 0.50
5 0.5 1.0 N N 39 20 0.94 0.50 10 2.0 0.0 N N 28 1 1.00 0.51
5 0.5 1.0 N Y 38 18 0.95 0.50 10 2.0 0.0 Y N 28 1 1.00 0.49
5 0.5 1.0 Y N 39 19 0.95 0.50 10 2.0 0.1 N N 28 1 1.00 0.49
5 0.5 1.0 Y Y 38 18 0.95 0.50 10 2.0 0.1 N Y 28 1 1.00 0.50

10 2.0 0.1 Y N 28 1 1.00 0.50
5 1.0 0.0 N N 28 1 1.00 0.50 10 2.0 0.1 Y Y 28 2 1.00 0.49
5 1.0 0.0 Y N 28 1 1.00 0.50 10 2.0 1.0 N N 28 1 1.00 0.50
5 1.0 0.1 N N 31 12 0.98 0.50 10 2.0 1.0 N Y 28 1 1.00 0.50
5 1.0 0.1 N Y 31 10 0.98 0.50 10 2.0 1.0 Y N 28 2 1.00 0.50
5 1.0 0.1 Y N 29 4 0.99 0.50 10 2.0 1.0 Y Y 28 1 1.00 0.49
5 1.0 0.1 Y Y 30 5 0.99 0.51
5 1.0 1.0 N N 33 16 0.96 0.50 15 0.5 0.0 N N 30 0 1.00 0.54
5 1.0 1.0 N Y 35 17 0.95 0.50 15 0.5 0.0 Y N 30 0 1.00 0.55
5 1.0 1.0 Y N 31 7 0.99 0.50 15 0.5 0.1 N N 30 0 1.00 0.38
5 1.0 1.0 Y Y 31 9 0.98 0.49 15 0.5 0.1 N Y 30 0 1.00 0.57

15 0.5 0.1 Y N 30 1 1.00 0.53
5 2.0 0.0 N N 28 1 1.00 0.50 15 0.5 0.1 Y Y 30 1 1.00 0.37
5 2.0 0.0 Y N 28 1 1.00 0.50 15 0.5 1.0 N N 30 0 1.00 0.46
5 2.0 0.1 N N 28 3 0.99 0.50 15 0.5 1.0 N Y 30 0 1.00 0.64
5 2.0 0.1 N Y 28 3 0.99 0.50 15 0.5 1.0 Y N 30 0 1.00 0.52
5 2.0 0.1 Y N 28 1 1.00 0.50 15 0.5 1.0 Y Y 30 0 1.00 0.39
5 2.0 0.1 Y Y 28 2 0.99 0.50
5 2.0 1.0 N N 29 5 1.00 0.50 15 1.0 0.0 N N 30 0 1.00 0.50
5 2.0 1.0 N Y 29 6 0.99 0.49 15 1.0 0.0 Y N 30 1 1.00 0.47
5 2.0 1.0 Y N 29 3 0.99 0.50 15 1.0 0.1 N N 30 0 1.00 0.43
5 2.0 1.0 Y Y 29 3 0.99 0.50 15 1.0 0.1 N Y 30 2 1.00 0.31

15 1.0 0.1 Y N 30 0 1.00 0.36
10 0.5 0.0 N N 28 1 1.00 0.50 15 1.0 0.1 Y Y 30 0 1.00 0.38
10 0.5 0.0 Y N 28 1 1.00 0.48 15 1.0 1.0 N N 30 1 1.00 0.42
10 0.5 0.1 N N 29 4 1.00 0.50 15 1.0 1.0 N Y 30 1 1.00 0.58
10 0.5 0.1 N Y 29 3 0.99 0.49 15 1.0 1.0 Y N 30 0 1.00 0.23
10 0.5 0.1 Y N 29 5 0.99 0.50 15 1.0 1.0 Y Y 30 0 1.00 0.30
10 0.5 0.1 Y Y 29 4 0.99 0.49
10 0.5 1.0 N N 29 4 0.99 0.49 15 2.0 0.0 N N 30 0 1.00 0.56
10 0.5 1.0 N Y 29 5 0.99 0.49 15 2.0 0.0 Y N 30 0 1.00 0.48
10 0.5 1.0 Y N 29 3 0.99 0.51 15 2.0 0.1 N N 30 0 1.00 0.32
10 0.5 1.0 Y Y 29 2 0.99 0.50 15 2.0 0.1 N Y 30 0 1.00 0.41

15 2.0 0.1 Y N 30 0 1.00 0.56
10 1.0 0.0 N N 28 1 1.00 0.49 15 2.0 0.1 Y Y 30 0 1.00 0.35
10 1.0 0.0 Y N 28 1 1.00 0.50 15 2.0 1.0 N N 30 0 1.00 0.59
10 1.0 0.1 N N 28 3 0.99 0.50 15 2.0 1.0 N Y 30 0 1.00 0.35
10 1.0 0.1 N Y 28 2 0.99 0.50 15 2.0 1.0 Y N 30 0 1.00 0.29
10 1.0 0.1 Y N 28 2 0.99 0.50 15 2.0 1.0 Y Y 30 0 1.00 0.66

TnV and ηV indicate whether Tn and η vary or not.
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Table 2: Tumor response summary to cetuximab plus FOLFIRI vs FOLFIRI alone treatment by KRAS status

Tumor response Cetuximab plus FOLFIRI FOLFIRI alone Odds ratioYes No Yes No
KRAS population 140 137 111 152 1.38 (0.98–1.95)

Mutant KRAS 38 67 35 52 0.80 (0.44–1.45)
Wild-type KRAS 102 70 76 100 1.91 (1.24–2.93)

between the two treatments; therefore, we apply the stopping rule for the contrasts of parameters,
γ = H

′
θ, given in Section 2.2 of Chang and Park (2013). Here, the transpose of the contrast H is

defined as a matrix with its first row (1,−1, 0, 0) and its second row (0, 0, 1,−1), and the vector of
parameters θ is (αA, αB, θ

∗
A, θ
∗
B)
′
.

Precision δ is assumed 0.2 and initial sample size for each treatment, m0, is assumed as 15, 20,
and 25. Several combinations of tuning parameters Tn and η are assumed: 0.1, 0.3 and 0.5 for Tn and
0, 0.01 and 0.1 for η. Both fixed and varying tuning parameters, Tn and η, are considered; that is, Tn

and η are fixed until the study stops, or vary whenever a new observation is added in a way that Tn is
proportional and η is inversely proportional to the standard deviation of the treatment effect for a given
covariate of a new observation. Findings from simulation results when the KRAS status is considered
are as follows (Table 3).

As η gets larger, stopping time gets later but its increase is reduced as initial sample size gets
larger. Varying η or Tn does not give significantly different results compared to fixed values. Stopping
time is later and more unstable as η is larger or initial sample size m0 is smaller, due to unstable regres-
sion coefficient estimates at the beginning stage. The coverage probabilities of treatment differences
becomes closer to 0.95 as the initial sample size m0 gets larger and η gets smaller.

For wild-type KRAS population, as η gets larger, if Tn = 0.3 and 0.5, correct treatment allocation
gets better with similar performance for positive η. This confirms that η plays a role as a tuning
parameter for ethical consideration and a small, nonzero η is sufficient for correct allocation. However,
if Tn = 0.1, correct treatment allocation gets worse for positive η and when Tn is varying. Tn = 0.1
is too small to secure accurate treatment estimate and subsequently inflate small treatment effect in
the utility function to make wrong treatment allocation. For small Tn, non-increasing sensitivities
are due to giving too much weight to ethical side by increasing η before getting accurate estimates of
treatment effect. This implies that we do not need to sacrifice accuracy by increasing η. Small positive
η is adequate to provide the ethical emphasis. CAP also greatly decreases when Tn is 0.1 and variable
due to smaller Tn than 0.1 for varying Tn.

For mutant KRAS population, correct allocation is better when η = 0.01 compared to η = 0.00.
However it is mostly not increased when η is increased from 0.01 to 0.1. This is also due to too much
weight to the ethical side assigning large η before estimating accurate treatment effect. Treatment
allocation is best if Tn = 0.1 for mutant KRAS because of easy detection of small treatment differences
(odds ratio is small, 0.80, for mutant KRAS while it is large, 1.91, for wild-type KRAS). If we
have to use the same Tn for both KRAS status, then Tn = 0.3 or 0.5 are recommended because
differences of correct allocation are larger when Tn = 0.3 or 0.5 compared to Tn = 0.1 for each KRAS
status. In summary, small positive η is adequate for ethical consideration and reasonable sized Tn

is recommended for correct allocation because too small Tn may yield decreasing correct allocation
from 0.5 as η is increased. Varying η does not affect the correct allocation seriously but varying too
small Tn may decrease correct allocation greatly to smaller than 0.5.

Findings from the numerical results when KRAS status is ignored are as follows (Table 4). Stop-
ping time is 50 if 2m0 = 50, same as the total initial sample sizes, mostly 40 if 2m0 = 40 or if
2m0 = 30, i.e, stopping time is very early and similar. Varying η or Tn do not make differences in
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Table 3: Mean (M) and standard deviation (SD) of stopping time (τδγ ), coverage probability (CP) and correct
allocation probabilities (CAP) of sequential 95% confidence interval estimation with δ = 0.2 when the covariate
interacting with treatment groups is considered in the treatment allocation process

Variation τδγ Variation τδγ
m0 Tn η TnV ηV M SD CP CAPw CAPm m0 Tn η TnV ηV M SD CP CAPw CAPm
15 0.1 0.00 N N 131 6 0.98 0.51 0.52 20 0.3 0.01 Y Y 169 41 0.90 0.81 0.61
15 0.1 0.00 Y N 132 11 0.97 0.51 0.52 20 0.3 0.10 N N 173 36 0.88 0.86 0.63
15 0.1 0.01 N N 199 63 0.87 0.45 0.73 20 0.3 0.10 N Y 184 55 0.92 0.83 0.55
15 0.1 0.01 N Y 199 75 0.86 0.44 0.70 20 0.3 0.10 Y N 183 42 0.90 0.84 0.60
15 0.1 0.01 Y N 204 81 0.83 0.24 0.71 20 0.3 0.10 Y Y 186 41 0.88 0.88 0.54
15 0.1 0.01 Y Y 210 72 0.83 0.23 0.74
15 0.1 0.10 N N 228 96 0.85 0.45 0.76 20 0.5 0.00 N N 131 8 0.96 0.50 0.53
15 0.1 0.10 N Y 219 90 0.88 0.45 0.73 20 0.5 0.00 Y N 131 6 0.99 0.50 0.54
15 0.1 0.10 Y N 227 95 0.83 0.20 0.70 20 0.5 0.01 N N 142 20 0.91 0.69 0.60
15 0.1 0.10 Y Y 211 78 0.86 0.20 0.72 20 0.5 0.01 N Y 144 23 0.92 0.74 0.55

20 0.5 0.01 Y N 150 26 0.92 0.81 0.60
15 0.3 0.00 N N 130 7 0.98 0.51 0.53 20 0.5 0.01 Y Y 151 25 0.94 0.82 0.59
15 0.3 0.00 Y N 131 9 0.97 0.51 0.53 20 0.5 0.10 N N 165 41 0.86 0.83 0.53
15 0.3 0.01 N N 156 36 0.90 0.77 0.57 20 0.5 0.10 N Y 161 42 0.93 0.82 0.58
15 0.3 0.01 N Y 167 62 0.86 0.78 0.55 20 0.5 0.10 Y N 162 30 0.92 0.82 0.60
15 0.3 0.01 Y N 172 42 0.87 0.84 0.58 20 0.5 0.10 Y Y 174 41 0.87 0.82 0.51
15 0.3 0.01 Y Y 183 51 0.80 0.80 0.65
15 0.3 0.10 N N 197 58 0.84 0.85 0.58 25 0.1 0.00 N N 131 7 0.97 0.50 0.55
15 0.3 0.10 N Y 206 61 0.82 0.81 0.57 25 0.1 0.00 Y N 131 7 0.99 0.50 0.55
15 0.3 0.10 Y N 198 71 0.90 0.83 0.59 25 0.1 0.01 N N 152 18 0.98 0.53 0.62
15 0.3 0.10 Y Y 210 83 0.82 0.82 0.61 25 0.1 0.01 N Y 162 27 0.93 0.50 0.69

25 0.1 0.01 Y N 157 22 0.96 0.28 0.72
15 0.5 0.00 N N 131 8 0.99 0.51 0.53 25 0.1 0.01 Y Y 159 24 0.98 0.28 0.75
15 0.5 0.00 Y N 130 7 1.00 0.51 0.52 25 0.1 0.10 N N 164 25 0.94 0.48 0.68
15 0.5 0.01 N N 146 34 0.93 0.70 0.53 25 0.1 0.10 N Y 163 23 0.97 0.52 0.63
15 0.5 0.01 N Y 154 37 0.86 0.72 0.58 25 0.1 0.10 Y N 162 24 0.94 0.23 0.65
15 0.5 0.01 Y N 160 41 0.86 0.79 0.58 25 0.1 0.10 Y Y 163 28 0.98 0.28 0.75
15 0.5 0.01 Y Y 164 41 0.81 0.79 0.58
15 0.5 0.10 N N 166 40 0.90 0.79 0.55 25 0.3 0.00 N N 132 7 0.98 0.50 0.54
15 0.5 0.10 N Y 180 47 0.84 0.78 0.54 25 0.3 0.00 Y N 131 6 0.99 0.50 0.55
15 0.5 0.10 Y N 174 40 0.91 0.83 0.54 25 0.3 0.01 N N 145 18 0.92 0.79 0.56
15 0.5 0.10 Y Y 181 46 0.89 0.86 0.55 25 0.3 0.01 N Y 152 31 0.94 0.84 0.61

25 0.3 0.01 Y N 150 19 0.99 0.78 0.62
20 0.1 0.00 N N 131 8 0.98 0.50 0.54 25 0.3 0.01 Y Y 156 23 0.94 0.83 0.59
20 0.1 0.00 Y N 132 8 0.96 0.50 0.55 25 0.3 0.10 N N 163 30 0.96 0.86 0.57
20 0.1 0.01 N N 174 35 0.90 0.47 0.77 25 0.3 0.10 N Y 164 33 0.95 0.85 0.54
20 0.1 0.01 N Y 173 40 0.92 0.54 0.71 25 0.3 0.10 Y N 167 27 0.94 0.85 0.54
20 0.1 0.01 Y N 174 36 0.93 0.23 0.65 25 0.3 0.10 Y Y 161 26 0.95 0.80 0.61
20 0.1 0.01 Y Y 175 42 0.91 0.24 0.70
20 0.1 0.10 N N 177 40 0.95 0.51 0.65 25 0.5 0.00 N N 131 8 0.96 0.49 0.53
20 0.1 0.10 N Y 181 45 0.93 0.51 0.69 25 0.5 0.00 Y N 131 6 0.97 0.50 0.54
20 0.1 0.10 Y N 184 45 0.93 0.25 0.69 25 0.5 0.01 N N 137 14 0.95 0.71 0.55
20 0.1 0.10 Y Y 182 34 0.90 0.30 0.78 25 0.5 0.01 N Y 139 13 0.94 0.74 0.58

25 0.5 0.01 Y N 139 12 0.98 0.76 0.59
20 0.3 0.00 N N 134 11 0.96 0.50 0.52 25 0.5 0.01 Y Y 145 22 0.94 0.84 0.56
20 0.3 0.00 Y N 132 9 0.95 0.49 0.52 25 0.5 0.10 N N 152 29 0.92 0.81 0.57
20 0.3 0.01 N N 158 44 0.90 0.77 0.53 25 0.5 0.10 N Y 153 26 0.96 0.84 0.61
20 0.3 0.01 N Y 159 27 0.93 0.83 0.59 25 0.5 0.10 Y N 155 23 0.89 0.85 0.54
20 0.3 0.01 Y N 162 29 0.94 0.82 0.59 25 0.5 0.10 Y Y 157 24 0.91 0.88 0.60

TnV and ηV indicate whether Tn and η vary or not.
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Table 4: Mean (M) and standard deviation (SD) of stopping time (τδγ ), coverage probability (CP) and correct
allocation probabilities (CAP) of sequential 95% confidence interval estimation with δ = 0.2 when the covariate
interacting with treatment groups is ignored in the treatment allocation process

Variation τδγ Variation τδγ
m0 Tn η TnV ηV M SD CAPw CAPm m0 Tn η TnV ηV M SD CAPw CAPm
15 0.1 0.00 N N 41 1 0.48 0.48 20 0.3 0.01 Y Y 41 2 0.65 0.26
15 0.1 0.00 Y N 41 2 0.48 0.49 20 0.3 0.10 N N 41 1 0.82 0.11
15 0.1 0.01 N N 42 4 0.45 0.53 20 0.3 0.10 N Y 41 2 0.81 0.23
15 0.1 0.01 N Y 42 2 0.50 0.51 20 0.3 0.10 Y N 41 2 0.89 0.17
15 0.1 0.01 Y N 42 2 0.37 0.67 20 0.3 0.10 Y Y 41 1 0.76 0.28
15 0.1 0.01 Y Y 42 3 0.27 0.75
15 0.1 0.10 N N 228 42 0.51 0.50 20 0.5 0.00 N N 41 1 0.05 0.91
15 0.1 0.10 N Y 219 43 0.45 0.57 20 0.5 0.00 Y N 41 1 0.05 0.95
15 0.1 0.10 Y N 227 42 0.34 0.66 20 0.5 0.01 N N 41 2 0.65 0.20
15 0.1 0.10 Y Y 211 42 0.34 0.70 20 0.5 0.01 N Y 41 2 0.82 0.25

20 0.5 0.01 Y N 41 2 0.74 0.24
15 0.3 0.00 N N 41 1 0.50 0.52 20 0.5 0.01 Y Y 41 1 0.72 0.20
15 0.3 0.00 Y N 41 1 0.51 0.50 20 0.5 0.10 N N 41 2 0.82 0.23
15 0.3 0.01 N N 42 3 0.69 0.30 20 0.5 0.10 N Y 41 2 0.62 0.22
15 0.3 0.01 N Y 42 3 0.65 0.38 20 0.5 0.10 Y N 41 1 0.86 0.24
15 0.3 0.01 Y N 42 2 0.62 0.37 20 0.5 0.10 Y Y 41 2 0.72 0.33
15 0.3 0.01 Y Y 43 3 0.65 0.32
15 0.3 0.10 N N 43 5 0.66 0.32 25 0.1 0.00 N N 50 0 · ·
15 0.3 0.10 N Y 43 4 0.59 0.41 25 0.1 0.00 Y N 50 0 · ·
15 0.3 0.10 Y N 43 3 0.73 0.27 25 0.1 0.01 N N 50 0 · ·
15 0.3 0.10 Y Y 43 3 0.67 0.31 25 0.1 0.01 N Y 50 0 · ·

25 0.1 0.01 Y N 50 0 · ·
15 0.5 0.00 N N 41 1 0.49 0.48 25 0.1 0.01 Y Y 50 0 · ·
15 0.5 0.00 Y N 41 1 0.49 0.50 25 0.1 0.10 N N 50 0 · ·
15 0.5 0.01 N N 42 2 0.60 0.42 25 0.1 0.10 N Y 50 0 · ·
15 0.5 0.01 N Y 41 2 0.60 0.35 25 0.1 0.10 Y N 50 0 · ·
15 0.5 0.01 Y N 42 3 0.62 0.42 25 0.1 0.10 Y Y 50 0 · ·
15 0.5 0.01 Y Y 42 3 0.62 0.34
15 0.5 0.10 N N 43 6 0.68 0.29 25 0.3 0.00 N N 50 0 · ·
15 0.5 0.10 N Y 42 3 0.62 0.38 25 0.3 0.00 Y N 50 0 · ·
15 0.5 0.10 Y N 42 4 0.67 0.37 25 0.3 0.01 N N 50 0 · ·
15 0.5 0.10 Y Y 44 18 0.68 0.30 25 0.3 0.01 N Y 50 0 · ·

25 0.3 0.01 Y N 50 0 · ·
20 0.1 0.00 N N 41 1 0.06 0.98 25 0.3 0.01 Y Y 50 0 · ·
20 0.1 0.00 Y N 41 2 0.09 0.87 25 0.3 0.10 N N 50 0 · ·
20 0.1 0.01 N N 41 1 0.38 0.56 25 0.3 0.10 N Y 50 0 · ·
20 0.1 0.01 N Y 41 1 0.39 0.63 25 0.3 0.10 Y N 50 0 · ·
20 0.1 0.01 Y N 41 1 0.20 0.97 25 0.3 0.10 Y Y 50 0 · ·
20 0.1 0.01 Y Y 41 1 0.24 0.71
20 0.1 0.10 N N 41 1 0.41 0.60 25 0.5 0.00 N N 50 0 0.00 ·
20 0.1 0.10 N Y 41 1 0.33 0.57 25 0.5 0.00 Y N 50 0 · ·
20 0.1 0.10 Y N 41 1 0.28 0.72 25 0.5 0.01 N N 50 0 · ·
20 0.1 0.10 Y Y 41 2 0.22 0.81 25 0.5 0.01 N Y 50 0 · ·

25 0.5 0.01 Y N 50 0 · ·
20 0.3 0.00 N N 41 1 0.03 0.84 25 0.5 0.01 Y Y 50 0 · ·
20 0.3 0.00 Y N 41 1 0.04 0.85 25 0.5 0.10 N N 50 0 · ·
20 0.3 0.01 N N 41 2 0.75 0.28 25 0.5 0.10 N Y 50 0 1.00 ·
20 0.3 0.01 N Y 41 1 0.78 0.14 25 0.5 0.10 Y N 50 0 · ·
20 0.3 0.01 Y N 41 1 0.72 0.26 25 0.5 0.10 Y Y 50 0 1.00 0.00

TnV and ηV indicate whether Tn and η vary or not.
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terms of stopping time. The coverage probabilities of treatment differences cannot be computed be-
cause the covariate is ignored. Instead, coverages of intercept differences are given in Table 4 and are
mostly larger than the nominal level 0.95 since there are less additional samples collected for larger
m0.

Correct allocation probabilities (CAP) for m0 = 25 are not computed since there are no additional
samples collected after initial samples. CAPs for m0 = 20 are not reliable since only one or two
additional samples were collected after the initial stage. CAPs for m0 = 15 are computed with the
11–14 additional samples and similar observations with the ones when the covariate is considered are
found but with smaller CAPs. This is due to asymmetric distribution of KRAS population on both
sides of intersection of two logistic curves for treatment effects not due to covariate consideration.

These findings also confirm that response-adaptive allocation ignoring significantly interacting
covariate with treatment groups does not play an ethical role by failing to skew the allocation for the
better treatment group.

4. Conclusion

When significant interaction between treatment and covariates is ignored, study stops earlier than ex-
pected once a few additional samples are collected. This makes it difficult to try skewed allocation
for better treatment and results in wrong treatment allocation. Throughout the paper, we have demon-
strated the importance of considering covariates that interact with the treatment allocation in a RA
design. For a real-world practice, it is recommended to investigate whether there are some possible
covariates interacting with the treatment for a RA design.
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