• Title/Summary/Keyword: response surface methods (RSM)

Search Result 116, Processing Time 0.03 seconds

Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater

  • Chollom, Martha Noro;Rathilal, Sudesh;Swalaha, Feroz Mohammed;Bakare, Babatunde Femi;Tetteh, Emmanuel Kweinor
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2020
  • This study was aimed at using the Central Composite Design (CCD) and Box-Behnken Design (BBD) to compare the efficiency and to elucidate the main interacting parameters in the upflow anaerobic sludge blanket (UASB) reactor, namely: Organic Loading Rate (OLR), Hydraulic Retention Times (HRT) and pH at a constant temperature of 35℃. Optimum HRT (15 h), OLR (3.5 kg.m-3.d-1) and pH (7) resulted in biogas production of 5,800 mL/d and COD removal of 80.8%. BBD produced a higher desirability efficiency of 94% as compared to the CCD which was 92%. The regression quadratic models developed with high R2 values of 0.961 and 0.978 for both CCD and BBD, respectively, demonstrated that the interaction models could be used to pilot the design space. BBD model developed was more reliable with a higher prediction of biogas production (5,955.4 ± 225.3 mL/d) and COD removal (81.5 ± 1.014%), much close to the experimental results at a 95% confidence level. CCD model predictions was greater in terms of COD removal (82.6 ± 1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 < 5,800 mL/d) which was less than the experimental results. Therefore, RSM can be adapted for optimizing various wastewater treatment processes.

Monitoring Decreases in the Patulin Level of Apple Juice using Response Surface Methodology (반응표면 분석에 의한 사과 주스의 Patulin 감소 조건 모니터링)

  • Baek, Chang-Ho;Park, Nan-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.84-90
    • /
    • 2010
  • We investigated methods to minimize patulin content during processing of apple juice in Korea. Ascorbic acid concentration (100, 200, 300, and 400 ppm) and activated carbon concentration (50, 100, 150, and 200 ppm) were the parameters assessed by response surface methodology. Residual patulin was lowest in the presence of 237.77 ppm ascorbic acid and 106.58 ppm activated carbon, and increased as these levels increased. Sugar content was affected more byascorbic acid concentration than by activated carbon level, and the total phenol content was revealed to be the saddle point. In addition, the expected total flavonoid content was maximized with increased levels of ascorbic acid and activated carbon. The data showed that 246-274 ppm (v/v) ascorbic acid and 93-122 ppm (v/v) activated carbon were optimal for juice extraction, and the $R^2$ quality factor for juice processing was significant and within the range of 1-10% for all tested parameters.

Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology (반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화)

  • Park, Ha Eun;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.299-304
    • /
    • 2013
  • A 17-run Box-Behnken design was used to optimize the synthesis conditions of a monolithic sorbent. The effects of the amount of monomer (mL), crosslink (mL) and porogen (mL) were investigated. The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The adjusted coefficient of determination ($R^2$) of the model was 0.9915. The probability value (p < 0.0001) demonstrated a high significance for the regression model. A mean amount of polymer as 2120.15 mg was produced under the following optimum synthesis conditions: the optimized volumes of monomer, crosslink and porogen are 0.30, 1.40, and 1.47 mL, respectively. This was in good agreement with the predicted model value.

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Optimizing Production Conditions for Germinated Brown Rice Cookies Prepared with Onion Powder (양파가루 첨가 발아현미쿠키의 제조조건 최적화)

  • Park, So-Yeon;Jung, Eun-Kyung;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.6
    • /
    • pp.779-787
    • /
    • 2010
  • The principal objective of this study was to determine the optimal mixing conditions for three amounts of onion powder, sugar, and butter to prepare onion powder cookies. The experimental design was based on the central composite design methodology of response surface, which included 16 experimental points including two replicates for onion powder, sugar, and butter. The mechanical and sensory properties of the cookies were measured, and these values were applied to the mathematical models. A canonical form and perturbation plot showed the influence of each ingredient on the mixed final product. The results of the spread ratio did not show significant results, but hardness increased with increasing quantities of onion powder and sugar but decreased with butter (p<0.01). The color lightness "L" value increased with increasing quantities of sugar and butter but decreased with added onion powder. In contrast, the redness color "a" value increased with increasing quantities of onion powder and sugar. Sugar did not affect the yellowness color "b" value, but the color b value increased with increasing onion powder and sugar. The results of a sensory evaluation using the predicted model showed significant values for flavor (p<0.01), texture (p<0.05), taste (p<0.05), and overall quality (p<0.01). As a result, the optimum formulation by numerical and graphical methods was calculated as 12.58 g onion powder, 35 g sugar, and 52.38 g butter.

Study on the Adsorption of Antibiotics Trimethoprim in Aqueous Solution by Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구)

  • Lee, Min-Gyu;Kam, Sang-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.568-576
    • /
    • 2018
  • In order to investigate the adsorption characteristics of the antibiotics trimethoprim (TMP) by activated carbon (WCAC) prepared from waste citrus peel, the effects of operating parameters on the TMP adsorption were investigated by using a response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design with four input parameters : concentration ($X_1$: 50-150 mg/L), pH ($X_2$: 4-10), temperature ($X_3$: 293-323 K), adsorbent dose ($X_4$: 0.05-0.15 g). The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The significance of the independent variables and their interactions was assessed by ANOVA and t-test statistical techniques. Statistical results showed that concentration of TMP was the most effective parameter in comparison with others. The adsorption process can be well described by the pseudo-second order kinetic model. The experimental data of isotherm followed the Langmuir isotherm model. The maximum adsorption amount of TMP by WCAC calculated from the Langmuir isotherm model was 144.9 mg/g at 293 K.

Enzymatic Synthesis of Ethyl Butyrate Using Ester Synthetase Derived from Banana Peel and Pineapple Peel (바나나 껍질과 파인애플 껍질 Ester Synthetase를 이용한 Ethyl Butyrate의 효소적 합성)

  • Yoon, Ki-Hong;Kim, Kee-huck;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1122-1127
    • /
    • 2017
  • Currently, the consumer trends are increasing towards "natural" in all food systems. Therefore, in the flavor industry, the production of flavor esters by "natural" methods are needed. On the other hand, "natural flavor" is expensive to produce because of the limited natural source. Recently, the flavor obtained from the enzyme or microbial could be represented as "natural flavor". Ethyl butyrate is used most frequently as a fruity aroma in drinks and the processed food industry. In this study, ethyl butyrate was synthesized enzymatically using the ester synthetase obtained from the waste of pineapple and banana peel. The ethyl butyrate production optimization was analyzed using a response surface methodology. The enzyme reaction variances were composed of the ethanol content, butyric acid content, and reaction time. As a result, in ester synthetase obtained from banana peel, the maximum predicted production amounts were 45.8199 mM at an ethanol content of 38.7050 mM, butyric acid content of 50.9019 mM, and reaction time of 4.3662 h. In ester synthetase obtained from pineapple peel, the maximum predicted production was 65.1087 mM at an ethanol content of 54.6502 mM, butyric acid content of 58.7638 mM, and reaction time of 4.7436 h. In conclusion, ethyl butyrate production was shown the more useful using the ester synthetase obtained from pineapple peel than that from banana peel.

Optimal Parameter Design for a Cryogenic Submerged Arc Welding(SAW) Process by Utilizing Stepwise Experimental Design and Multi-dimensional Design Space Analysis (단계적 실험 설계와 다차원 디자인 스페이스 분석 기술을 통한 초저온 SAW 공정의 최적 용접 파라미터 설계)

  • Lee, Hyun Jeong;Kim, Young Cheon;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.51-68
    • /
    • 2020
  • Purpose: The primary objective of this research is to develop the optimal operating conditions as well as their associated design spaces for a Cryogenic Submerged Arc Welding(SAW) process by improving its quality and productivity simultaneously. Methods: In order to investigate functional relationships among quality characteristics and their associated control factors of an SAW process, a stepwise design of experiment(DoE) method is proposed in this paper. Based on the DoE results, not only a multi-dimensional design space but also a safe operating space and normal acceptable range(NAR) by integrating statistical confidence intervals were demonstrated. In addition, the optimal operating conditions within the proposed NAR can be obtained by a robust optimal design method. Results: This study provides a customized stepwise DoE method (i.e., a sequential set of DoE such as a factorial design and a central composite design) for Cryogenic SAW process and its statistical analysis results. DoE results can then provide both the main and interaction effects of input control factors and the functional relationships between the input factors and their associated output responses. Maximizing both the product quality with high impact strength and the productivity with minimum processing times simultaneously in a case study, we proposed a design space which can provide both acceptable productivity and quality levels and NARs of input control factors. In order to confirm the optimal factor settings and the proposed NARs, validation experiments were performed. Conclusion: This research may provide significant contributions and applications to many SAW problems by preparing a standardization of the functional relationship between the input factors and their associated output response. Moreover, the proposed design space based on DoE and NAR methods can simultaneously consider a number of quality characteristics including tradeoff between productivity and quality levels.

Optimization of Pan Bread Prepared with Ramie Powder and Preservation of Optimized Pan Bread Treated by Gamma Irradiation during Storage

  • Lee, Hee-Jeong;Joo, Na-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.1
    • /
    • pp.53-63
    • /
    • 2012
  • This study was conducted to develop an optimal composite recipe for pan bread with ramie powder that has high sensory approval with all age groups and to estimate the DPPH radical scavenging activity and the pan bread shelf life after gamma irradiation. The sensory evaluation results showed significant differences in flavor (p<0.05), appearance (p<0.01), color (p<0.01), moistness (p<0.01), and overall quality (p<0.05) based on the amount of ramie powder added. As a result, the optimum formulations by numerical and graphical methods were calculated to be as follows: ramie powder 2.76 g (0.92%) and water 184.7 mL. Optimized pan bread with ramie powder and white pan bread were irradiated with gamma-rays at doses of 0, 10, 15, and 20 kGy. The total bacterial growth increased with the longer storage time and the least amount of ramie powder added. Consequently, these results suggest that the addition of ramie powder to pan bread provides added value to the bread in terms of increased shelf life.

A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency (충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구)

  • Lee, Jung Hwan;Jeong, Nak Tak;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.