DOI QR코드

DOI QR Code

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob (Department of Food Science and Technology, Chonbuk National University) ;
  • Sob, Kum-Kang (Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Lee, Ju-Hee (Department of Food Science and Technology, Chonbuk National University) ;
  • Kim, Jung-Mi (Department of Bio-Environmental Chemistry, Wonkwang University) ;
  • Chun, Gie-Taek (Department of Molecular Biology, Kangwon National University) ;
  • Chun, Jeesun (Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Kim, Dae-Hyuk (Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Received : 2019.06.06
  • Accepted : 2019.08.22
  • Published : 2019.12.01

Abstract

Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Keywords

References

  1. Bollag JM, Leonowicz A. Comparative studies of extracellular fungal laccases. Appl Environ Microbiol. 1984;48(4):849-854. https://doi.org/10.1128/aem.48.4.849-854.1984
  2. Mayer AM. Polyphenol oxidases in plant-recent progress. Phytochemistry. 1986;26(1):11-20. https://doi.org/10.1016/S0031-9422(00)81472-7
  3. Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol. 2009;82(4):605-6024. https://doi.org/10.1007/s00253-009-1869-z
  4. Hoegger PJ, Kilaru S, James TY, et al. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 2006;273(10):2308-2326. https://doi.org/10.1111/j.1742-4658.2006.05247.x
  5. Thurston CF. The structure and function of fungal laccases. Microbiology. 1994;140(1):19-26. https://doi.org/10.1099/13500872-140-1-19
  6. Baldrian P. Fungal laccases - occurrence and properties. FEMS Microbiol Rev. 2006;30(2):215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  7. Widsten P, Kandelbauer A. Adhesion improvement of lignocellulosic products by enzymatic pretreatment. Biotechnol Adv. 2008;26(4):379-386. https://doi.org/10.1016/j.biotechadv.2008.04.003
  8. Ikehata K, Buchanan ID, Smith DW. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Eng Sci. 2004;3(1):1-19. https://doi.org/10.1139/s03-077
  9. Husain Q. Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol. 2006;60:201-221. https://doi.org/10.1080/07388550600969936
  10. Kuddus M. Enzymes in food biotechnology: production, applications, and future prospects. London (UK): Academic Press; 2018.
  11. Marco MP, Barcelo D. Environmental applications of analytical biosensors. Meas Sci Technol. 1996;7(11):1547-1562. https://doi.org/10.1088/0957-0233/7/11/002
  12. Hwang HM, Hu X, Zhao X. Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007;25(4):313-352. https://doi.org/10.1080/10590500701704011
  13. Moreno AD, Tomas-Pejo E, Ibarra D, et al. Fedbatch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of lacccase supplementation. Biotechnol Biofuels. 2013;6(1):160. https://doi.org/10.1186/1754-6834-6-160
  14. Chandel AK, Kapoor RK, Singh A, et al. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol. 2007;98(10):1947-1950. https://doi.org/10.1016/j.biortech.2006.07.047
  15. Claus H, Faber G, Konig H. Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol. 2002;59(6):672-678. https://doi.org/10.1007/s00253-002-1047-z
  16. Afreen S, Shamsi TN, Baig MA, et al. A novel multicopper oxidase (laccase) from cyanobacteria: purification, characterization with potential in the decolorization of anthraquinonic dye. PLoS One. 2017;12(4):e0175144. https://doi.org/10.1371/journal.pone.0175144
  17. Zhang J, Sun L, Zhang H, et al. A novel homodimer laccase from Cerrena unicolor BBP6: purification, characterization, and potential in dye decolorization and denim bleaching. PLoS One. 2018;18:e0202440. https://doi.org/10.1371/journal.pone.0202440
  18. Giardina P, Faraco V, Pezzella C, et al. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369-385. https://doi.org/10.1007/s00018-009-0169-1
  19. Augustine AJ, Kragh ME, Sarangi R, et al. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites. Biochemistry. 2008;47(7):2036-2045. https://doi.org/10.1021/bi7020052
  20. Bulter T, Alcalde M, Sieber V, et al. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol. 2003;69(2):987-995. https://doi.org/10.1128/AEM.69.2.987-995.2003
  21. Pezzella C, Autore F, Giardina P, et al. The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet. 2009;55(1):45-57. https://doi.org/10.1007/s00294-008-0221-y
  22. Ilimura Y, Sonoki T, Habe H. Heterologous expression of Trametes versicolor laccase in Saccharomyces cerevisiae. Protein Expr Purif. 2018;141:39-43. https://doi.org/10.1016/j.pep.2017.09.004
  23. Kiiskinen LL, Kruus K, Bailey M, et al. Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology. 2004;150(Pt 9):3065-3074. https://doi.org/10.1099/mic.0.27147-0
  24. Yaver DS, Overjero MD, Xu F, et al. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Appl Environ Microbiol. 1999;65(11):4943-4948. https://doi.org/10.1128/aem.65.11.4943-4948.1999
  25. Guo M, Lu F, Liu M, et al. Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye. Biotechnol Lett. 2008;30(12):2091-2096. https://doi.org/10.1007/s10529-008-9817-z
  26. Hatamoto O, Sekine H, Nakano E, et al. Cloning and expression of a cDNA encoding the laccase from Schizophyllum commune. Biosci Biotechnol Biochem. 1999;63(1):58-64. https://doi.org/10.1271/bbb.63.58
  27. Bohlin C, Jonsson LJ, Roth R, et al. Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Appl Biochem Biotechnol. 2006;129(1-3):195-214. https://doi.org/10.1385/ABAB:129:1:195
  28. Chung HJ, Kwon BR, Kim JM, et al. A tannic acid-inducible and hypoviral-regulated Laccase3 contributes to the virulence of the chestnut blight fungus Cryphonectria parasitica. Mol Plant Microbe Interact. 2008;21(12):1582-1590. https://doi.org/10.1094/MPMI-21-12-1582
  29. Kim JM, Park SM, Kim DH. Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae. BMC Biotechnol. 2010;10(1):18. https://doi.org/10.1186/1472-6750-10-18
  30. Green MR, Sambrook J. Molecular cloning: a laboratory manual. 4th ed. New York (NY): Cold Spring Harbor; 2012.
  31. Park EH, Shin YM, Lim YY, et al. Expression of glucose oxidase by using recombinant yeast. J Biotechnol. 2000;81(1):35-44. https://doi.org/10.1016/S0168-1656(00)00266-2
  32. Taylor K. A Modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances. Appl Biochem Biotechnol. 1995;53(3):207-214. https://doi.org/10.1007/BF02783496
  33. Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J R Stat Soc Series B Stat Methodol. 1951;13:1-45.
  34. Rigling D, Heiniger U, Hohl HR. Reduction of laccase activity in dsRNA-containing hypovirulent strains of Cryphonectria (Endothia) parasitica. Phytopathology. 1989;79(2):219-223. https://doi.org/10.1094/Phyto-79-219