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1. Introduction

Wastewater treatment processes are complex, therefore, the in-
corporation of multiple variables during the treatment process for 
the optimum performance of the system is necessary. Each of the 
chosen variables is expected to be operated at an optimum range 
to maximise the benefit of the process, therefore, optimization 
becomes very important [1, 2]. In fact, the feasibility of the conven-
tional techniques, such as the one-factor-at-time (OFAT) is very 
challenging in environmental processes and wastewater treatment 
systems for acquiring the best conditions to maximise the desired 
response or treatability performance [1, 3]. Conventionally, the 

OFAT method which involves changing one independent variable 
while holding others at fixed level is extremely time consuming 
and expensive to run high number of experiments. Subsequently, 
optimization using multivariable techniques is encouraged, as they 
are economical, faster, and effective to optimize multivariable 
simultaneously. Furthermore, the multivariable approach offers 
the advantage of interactive effects among the factors [4].

Consequently, due to the powerful efficiency of the multivariable 
technique, response surface methodology (RSM) has been encour-
aged for optimization of various process systems. The RSM is a 
resourceful tool which is made up of mathematical and statistical 
techniques that are based on the fit of a polynomial equation to 
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ABSTRACT
This study was aimed at using the Central Composite Design (CCD) and Box-Behnken Design (BBD) to compare the efficiency and to elucidate 
the main interacting parameters in the upflow anaerobic sludge blanket (UASB) reactor, namely: Organic Loading Rate (OLR), Hydraulic Retention 
Times (HRT) and pH at a constant temperature of 35°C. Optimum HRT (15 h), OLR (3.5 kg.m-3.d-1) and pH (7) resulted in biogas production 
of 5,800 mL/d and COD removal of 80.8%. BBD produced a higher desirability efficiency of 94% as compared to the CCD which was 92%. 
The regression quadratic models developed with high R2 values of 0.961 and 0.978 for both CCD and BBD, respectively, demonstrated that 
the interaction models could be used to pilot the design space. BBD model developed was more reliable with a higher prediction of biogas 
production (5,955.4 ± 225.3 mL/d) and COD removal (81.5 ± 1.014%), much close to the experimental results at a 95% confidence level. CCD 
model predictions was greater in terms of COD removal (82.6 ± 1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 < 5,800 mL/d) 
which was less than the experimental results. Therefore, RSM can be adapted for optimizing various wastewater treatment processes.
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the experimental data in order to predict the behaviour of the system 
[5]. It has been employed for the optimization of various wastewater 
treatment processes to improve the water quality [3, 6].

A study by Bashir et al. [7] reported that out of 3,190 articles 
published within the year 2000 to 2013 (data extracted from Scopus), 
about 352 documents were related to the application of RSM for 
process optimization in different subject areas of research. Some 
of which were engineering (15.6%), biochemistry (11.2%), agricul-
tural and biological science (10.6%), chemical engineering (9.5%) 
and environmental science (6%) [7, 8]. The studies carried out 
in the optimization of operational factors in different types of waste-
water treatment processes by various authors includes textile dye 
wastewater [3] landfill leachate [6], oil refinery wastewater [1] and 
the sugar refinery wastewaters [9].

The RSM has been shown to be advantageous over the traditional 
techniques of optimization with respect to the number of experiments 
and multifactor interactions [1]. RSM, as a collection of a mathemat-
ical and statistical tool, is usually used in designing of experiments 
as well as for the evaluation of the most influential factors on chosen 
responses. This tool describes the interactional effects between a 
set of data. Again, it can be used to generate models for the prediction 
of the responses. To expand the application of RSM, there is the 
need to evaluate which of the design types fit for the number of 
process parameters. Some of the design types of RSM include 
Doehlert Design (DD), Central Composite Design (CCD), the 
Box-Behnken Design (BBD) and a three-level full factorial design 
[3, 6]. Each of the design types offers both advantages and 
disadvantages.

To increase the bioremediation efficiency, more especially in 
UASB systems, it is crucial to know the optimal operating conditions. 
Since some of the influential parameters in biological systems have 
interactional effects which can inhibit a shift in microbial 
community. Bezerra et al. [3] reported that using minimum number 
of experimental runs, a correlation can be developed to evaluate 
the relationship between the response of interest and the input 
variables. Ibrahim, et al [4] used BBD to model and optimize external 
parameters of biological system for the removal of COD and 
phosphorus. The results showed that at optimum temperature of 
45.33°C and 60 d, desirability performance of 99.8% was obtained 
for the removal of COD and phosphorus, which correspond to 
95% confidence at index R2 of 0.955 and 0.91, respectively. Amr 
et al [10] conducted a study on three independent factors (ozone 
dosage, COD concentration, and reaction time) using RSM to eval-
uate the treatment of semi-aerobic stabilized leachate. The obtained 
optimum conditions were 70 g/m3 ozone, 250 mg/L COD, and 60 
min reaction time for 26.7, 7.1, and 92% removal for COD, NH3–N, 
and colour, respectively.

The use of RSM as an optimization tool is seen to be increasing 
as earlier indicated by Bashir et al. [7], little information for its 
application in biological wastewater treatment systems exist. 
Biological wastewater treatment systems such as the upflow anaero-
bic sludge blanket (UASB) are preferred for the treatment of waste-
waters with high organics such as those from the slaughterhouses 
due to their robustness. The incomplete removal of organic matters 
and pathogens is one of the disadvantages of the UASB reactor 
[11, 12]. The performance of the UASB is easily affected by both 
environmental and operational factors. Therefore, to improve the 

efficiency of a UASB processes, it is expected that the operational 
parameters are operated at an optimum. The optimization of UASB 
processes has been carried out mostly with the use of OFAT which 
does not consider the interactional effects on the response. The 
use of RSM for the optimization of both input variables either 
independently or in combination will be necessary.

The information with regards to the comparative modelling and 
optimization of biogas production and COD removal efficiency 
in an UASB process is limited. A few studies have attempted to 
model and optimize UASB processes using one of the optimization 
tools, but very little or none have looked at the comparison of 
both optimization tools [1, 9, 13, 14]. The present study therefore 
focused on simulating and comparing the CCD and BBD response 
surface designs to evaluate their desirability efficiency in a biological 
wastewater treatment process. In this study, the effects of the HRT, 
pH and Organic Loading Rate (OLR) as independent parameters 
of UASB for the breaking down of the organic and inorganic compo-
nents such as the COD to generate the biogas was investigated. 
Statistically designed RSM were used to optimize the afore-
mentioned parameters at different levels and understand their inter-
active effects on the responses (COD and biogas) at maximum 
target. These two parameters were chosen due to the fact that 
the treatment efficiency is mainly influenced by them.

2. Materials and Methods

2.1. Synthetic Wastewater

A 25 L synthetic wastewater was prepared before each experimental 
run. The wastewater was characterized according to specification 
by Lettinga and Pol [15] with a Biological Oxygen Demand 
(BOD)/COD ratio of 0.40-0.53 comparable to slaughterhouse 
wastewater. The synthetic wastewater was continuously fed into 
a 5 L UASB at the flowrate predetermined by a peristatic pump 
(Flexflo A-100E, Blue-White Industries Ltd.).

2.2. Seed sludge and Experimental Apparatus

The UASB reactor used for the experiment was constructed from 
plexiglas glass and its effective working volume was 4.5 L. The 
UASB was continuously fed with synthetic wastewater at the bottom 
of the reactor and the effluent was collected at the top. It was 
operated at a constant mesophilic temperature of 35 ± °C. Fig. 
S7 shows a schematic diagram for the experimental set-up. The 
reactor was started with a TSS of 19.4 g/L and VSS of 13.8 g/L 
digested seed sludge collected from a local wastewater treatment 
plant treating slaughterhouse wastewater in South Africa. The pH 
of the reactor was maintained by the addition of 1 M HCl and 
1 M NaOH. Table S3 shows the characteristics of the wastewater 
that was used for the experiments. The performance of the reactor 
was calculated using Eq. (1). 

Reactor efficiency  

  ×  (1)

Where, CODout = Effluent and CODin = Influent
The reactor was started with an OLR of 1.54 kg.m-3.d-1 at a 
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HRT of 24 h for the first three days of the start-up where it was 
operated in a batch mode, thereafter, the continuous mode was 
used. The OLR was thereafter increased in a stepwise manner 
according to the chosen HRT (6, 12 and 18 h) and it was maintained 
to enable the microorganisms to adapt to the new loadings until 
the system had attained stability. Upon HRT change, the reactor 
was run for a period of 50 d before changing to the next. 

2.3. Analytical Methods

The water displacement technique was used to measure biogas 
that evolved from the anaerobic digestion (AD) process [14]. COD, 
which is measured based on the quantity of oxidant (Cr+6) consumed 
and expressed in terms of its oxygen equivalence, was determined 
using close refluxing according to the standard method 5220D [16, 
17]. Other parameters were determined as shown in Table S3.

2.4. Experimental Design and Procedure

Design Expert software (10.0.3) was used to perform the statistical 
design of experiments and data analysis. Three independent effec-
tive variables were selected: HRT, pH and OLR. The OLR is a 
measure of the capability of the microorganism in the AD process 
to breakdown organic compounds present in the effluent.

2.4.1. CCD
The CCD is a RSM design type which estimates the second order 
polynomial on a wider range of the design space and processes 
the input data to give out the interactions between the response 
and the process variables. The CCD is a five-level fractional factorial 
design, which comprises of a two level factorial design, central 
designs and two axial designs. The centre point is replicated to 
enhance the measurement of reproductively and the model lack 
of fit. It also has rotatability and orthogonality properties, which 
helps in the curvature description when represented in 3D plots. 
There were 30 experimental runs derived from the design matrix, 
with two centre points and an alpha value of 1.89. The total number 
of the experiments (N) depended on the replication number of 
the centre points. The range and levels of the variables in coded 
and actual units are given in Table 1.

2.4.2. BBD
The BBD is a spherical, rotatable, or nearly rotatable second-order 
design. It is based on a three-level incomplete factorial design, which 
consists of the centre point and middle points like the edge of a 
cube. Although, BBD can be derived from a cube, it can be represented 
spherically, making the vertices of the cube not covered by the 
design. It can be considered as three interlocking factorial designs 
along with centre points. The BBD is said to be a more economical 
and viable tool than the CCD, because its design matrix are usually 
generated with a fewer number of experimental runs [3, 6].

As shown in Table 1, three levels were chosen for the independent 
variables (operating variables). The CCD and BBD experimental 
design were conducted for the three factors and the two responses 
(COD removal and biogas production). Other parameters that were 
monitored alongside were the alkalinity, Volatile Fatty Acids (VFA), 
Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS). 
The parameters were chosen to indicate the performance of the 
reactors in terms of operational stability and efficiency.

Table 1. Experimental Design Inputs and Factors

Input variables 
    Levels (X)

-1 0 1

X1: HRT (h) 6 12 18

X2: OLR (kg.m-3･d-1) 3 7 10

X3: pH 6 7 8

Input variables were coded according to Eq. (2) [1].

 ∆

  
(2)

Where ,  and  ∆ represent the coded level, the real 

value, the centre point value and the variable step change, 
respectively.

A second order polynomial Eq. (3) was used to describe the 
effect of the chosen parameters and their interactions on the re-
sponses using the BBD for the experimental design.

   ∑  
   ∑  

  
 ∑  

    (3)

Where ,  ,   and  are constant, linear, quadratic, and 

cross factor interaction coefficients, respectively;    and   repre-

sent the independent variables;    is the predicted response; and 

k and c are the number of factors and the residual terms, respectively. 
The significance of the model equations, individual parameters 
and factor interaction were evaluated by the analysis of variance 
(ANOVA) at a confidence intervals (CI) of 95% (  ). Two-di-
mensional (2D) contour plots and three-dimensional (3D) surface 
responses were obtained after applying the developed quadratic 
models.

3. Results and Discussion

Treatment efficiency for the UASB was observed to be above 
65% of the contaminants removal. VFA, alkalinity, TSS and VSS, 
respectively were reduced to 64.9 ± 2.5, 92 ± 5.5, 35 ± 7.8 
and 125 ± 8.6 mg/L. A significant desludging of 5 ± 1.5 mg 
TSS/L was carried out to reduce the UASB sludge volume 
intermittently. RSM was employed to reduce the number of ex-
periments by selecting a small number of experiments, which 
were best representatives of the test domain to investigate the re-
sponses (COD and biogas).

Tables S4 and S5 illustrate the experimental matrices, which 
have 16 factorial points, 8 axial points and 6 centres points. They 
were then evaluated using multiple regression analysis of the CCD 
and BBD adapted from the RSM. The ANOVA was employed to 
evaluate the significant effect of the regression models statistically. 
The regression models mathematically explained the relationship 
between the responses and the independent variables on the system. 
The visual representation of the responses is graphically presented 
in 3D surface and 2D contour plots. The regression models developed 
using CCD and BBD together with the experimental data are ex-
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pressed in coded and actual values as depicted equations 4-7 for 
CCD and 8-11 for BBD. The combination of the factors at different 
levels showed effective responses of the models, with the models 
predicted value and experimental value difference being less than 
5%. The experimental data were well fitted to the quadratic poly-
nomial function.

From the equations for both the CCD (Eq. (4)-(7)) and BBD (Eq. 
(8)-(11)), the models developed showed a good fit to the quadratic 
design space with high regression coefficients. Quadratic models 
had high R2 (0.9606; 0.9782), adjusted R2 (0.9429; 0.9614) and 
predicted R2 (0.8499; 0.8945) values for the CCD and BBD, 
respectively. All the models were significant with an insignificant 
lack of fit (LOF) at the 95% confidence level. The BBD based 
models had superlative values for the R2 as compared with 
the CCD. The response models developed and their respective 
predicted values were then evaluated to validate the ex-
perimental results for the treatment of the wastewater using 
UASB. In addition, the models derived by the BBD seem to 
be simpler than the CCD, which had only 9 terms, whereas 
the CCD had 10. According to Zolgharnein et al. [6], the sim-
plicity of the BBD makes it stand out from a theoretical statistical 
standpoint for better prediction. The response models, due to 
their complexity, validity, accuracy and operational interactions 
were then compared (section 3.1) with respect to their design’s 
performance.

CCD-COD model actual 

169.37  2.701HRT  13.081OLR  19.971pH + 

1.14(HRT × OLR) + 0.575(HRT × pH) + 

2.133(OLR × pH)  0.041(HRT2)  0.101(OLR2) + 

0.778 (pH²)  0.168 (HRT × OLR × pH) (4)

CCD-COD model coded =

82.443 + 0.551A + 0.307B  1.448C 

0.786AB  3.114AC + 0.401BC  A2 

1.238B2 + 0.778C2  3.533ABC (5)

CCD-Biogas model actual =

21304.49 + 479.896HRT + 21.593OLR 

5719.225pH  19.675(HRT × OLR) 

64.836(HRT × pH)  19.268(OLR × pH) + 
2.019(HRT2) + 17.462(OLR2) + 470.692(pH2) +

1.399(HRT × OLR × pH) (6)

CCD-Biogas model coded = 

4168.13  16.85A  16.85B + 76.37C 

207.43AB  334.43AC  8.65BC + 72.71A2 + 
213.9B2 + 470.69C2 + 29.39A (7)

BBD-COD model actual = 

161.29  0.856HRT  3.389OLR 

17.363pH  0.00694(HRT × OLR) + 

0.102(HRT × pH) + 0.4739(OLR × pH) +
0.00429(HRT2) + 0.00776(OLR2) + 0.85 (pH2) (8)

BBD-COD model coded = 
82.443 + 0.551A + 0.307B  1.448C 

0.786AB  3.114AC + 0.401BC  A2 

1.238B2 + 0.778C2  3.533ABC (9)

BBD-Biogas model actual = 
- 6994.49 + 1055.50HRT  1089.921OLR + 
2640.099pH  16.22(HRT × OLR) 

107.61(HRT × pH) + 144.1(OLR × pH) 

7.431(HRT2) + 17.648(OLR2)  163.65 (pH2) (10) 

BBD-Biogas model coded = 
4976.81 + 110.91A  162.5B  5.67C 

340.63AB  645.63AC + 504.35BC  267.52A2 +
216.2B2  163.65C2 (11)

3.1. The Analysis of Variance (ANOVA) and Significance of 
the Models Using CCD and BBD

The ANOVA is essential in determining the significance and ad-
equacy of the model. From model equations for both the CCD and 
BBD, the models developed were expressed in terms of their coded 
and actual values. The relationship and interactions between the 
HRT (A), OLR (B) and pH(C) and the responses were established 
by applying the multiple regression analysis. With the ANOVA, 
the statistical values of the model terms were determined. Tables 2 
and 3 depict the ANOVA summary of the CCD and BBD for the 
COD based models, respectively. Likewise Tables 4 and 5 show 
the biogas production using CCD and BBD. In terms of the CCD, 
the coefficient of determination (R2) for COD and biogas were 0.9617 
and 0.9653, respectively. In addition, the R2 of the COD and bio-
gas-based models using the BBD were 0.9752 and 0.9802, respectively. 
In both occurrences the R2 values were found to be greater than 
0.8 indicating a good fit of the models. Each of the model terms 
evaluated by the F-test showed 5% significance level (p < 0.05) 
with a p-value (probability) of 95% confidence level. The CCD and 
BBD F-values for COD (47.70; 3.37) and biogas (3.31; 9.02) implied 
that there was less than 2% chance that an F-value that large could 
occur due to error. Hence, the significant terms with p-values less 
than 0.05 were considered as significant terms, whilst those with 
p ≥ 0.05 were considered as limited terms. The high hierarchal 
were of the model terms with p-values greater than or equal to 
0.05, which had limited influence on the response were also excluded. 
The adequate precision measured the signal to noise ratio.

The adequate precision ratio and the low values of the coefficient 
of variation (CV) validated the reliability and good precision of 
the models as shown in Table 2-5. A precision greater 4 indicated 
that the model was significant while the CV should be ≥ 0.1. The 
ANOVA results prove that the response surface models for predict-
ing the COD and biogas yield are considerably coherent. This is 
due to the high R2 values, which satisfied the adjustment of the 
models to suit the experimental data. This demonstrated a good 
agreement between the experimental data and the predicted results 
(Table S4 and S5). Furthermore, the ANOVA results showed a 
desirable and coherent agreement with the adjusted R2. Therefore, 
the use of the quadratic models could be used to optimize the 
system under the same given condition instead of the conventional 
method.
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3.2. Diagnostic Checking of the Fitted Models Using CCD 
and BBD

To authenticate the normality assumptions, the normal probability 
plot of residuals was used. Such that, if the residuals plot approaches 
a straight line, then the normality assumption is satisfied. According 
to Zolgharnein et al. [6], although some points are anticipated 
to scatter evenly, if the data points falls along the 

straight line then it is acceptably significant. Fig. S3 and S4 show 
that the normal probability vs the studentized residuals plots for 
both CCD and BBD, respectively. The plots for the CCD and BBD 
responses suggest that the random scattering of the point is dis-
tributed along the line. However, some of the points were evenly 
distributed, hence indicating a constant variance of the response. 
Fig. S4 and S5 presented the predicted vs experimental value plots, 
which demonstrated that the predicted values depended on the 

Table 2. ANOVA Results and Adequacy of the Quadratic Models for COD Using CCD 

Source Sum of squares df Mean square F-value p-value  

COD-Model 540.39 10 54.04 47.7 < 0.0001 significant

A-HRT 8.28 1 8.28 7.31 0.0141  

B-OLR 2.58 1 2.58 2.27 0.148  

C-pH 57.24 1 57.24 50.52 < 0.0001  

AB 9.88 1 9.88 8.72 0.0082  

AC 155.13 1 155.13 136.94 < 0.0001  

BC 2.57 1 2.57 2.27 0.1487  

A2 26.46 1 26.46 23.35 0.0001  

B2 18.57 1 18.57 16.39 0.0007  

C2 7.32 1 7.32 6.46 0.0199  

ABC 199.71 1 199.71 176.29 < 0.0001  

Residual 21.52 19 1.13      

Lack of Fit 0.5219 4 0.1305 0.0932 0.9831 not significant

Pure Error 21 15 1.4      

Cor Total 561.91 29        

Std. Dev. 1.06 R2 0.9617
Adjusted R2 

0.9415
Predicted R2 

0.8955
Adeq Precision

23.8754
Mean 80.68 C.V. % 1.32

Table 3. ANOVA Results and Adequacy of the Quadratic Models for COD Using BBD

Source Sum of squares df Mean square F-value p-value  

COD-Model 31.21 9 3.47 3.37 0.0114 significant

A-HRT 2.19 1 2.19 2.13 0.1601  

B-OLR 0.366 1 0.366 0.3553 0.5578  

C-pH 10.84 1 10.84 10.52 0.0041  

AB 0.0851 1 0.0851 0.0826 0.7767  

AC 1.49 1 1.49 1.44 0.2439  

BC 10.96 1 10.96 10.64 0.0039  

A2 0.1188 1 0.1188 0.1153 0.7377  

B2 0.045 1 0.045 0.0436 0.8366  

C2 3.59 1 3.59 3.49 0.0766  

Residual 20.6 20 1.03      

Lack of Fit 8.29 3 2.76 3.82 0.0294 significant

Pure Error 12.31 17 0.7243      

Cor Total 51.82 29        

Std. Dev. 1.01 R² 0.9752
Adjusted R2

0.943
Predicted R2

0.8826
Adeq Precision 

9.62
Mean 79.87 C.V. % 1.27
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main effect of the factor levels. Hence, it is important to identify 
these influential factors and their levels to ascertain the significance 
of the model. As depicted in Fig. S5 (a) and (b), the removal 
efficiency of the COD ranged from 72% to 88% and for biogas 
production from 4,200 mL/d to 5,700 mL/d, respectively for the 
CCD. In Fig. S6(a) and (b), COD removal of 78% to 88% and 
biogas production of 3,800 mL/d to 5,800 mL/d was obtained by 
using the BBD.

3.3. The Three-dimensional (3D surface) Plots of the Models

To graphically analyse the interactive relationships among the 
factors and the response, the Design Expert 10.0.3 generated the 
3D surface. The visual representation of the response surface in 
3D surface plots assisted the investigation and optimization of 
the UASB, by determining the maximum region of interest on 
the curvature of the surface. The precise location and optimum 

Table 4. ANOVA Results and Adequacy of the Quadratic Models for Biogas Using CCD

Source Sum of squares df Mean square F-value p-value  

Biogas-Model 6.40E + 06 10 6.40E + 05 3.31 0.012 significant

A-HRT 1.05E + 05 1 1.05E + 05 0.5404 0.4713  

B-OLR 7,758.16 1 7,758.16 0.0401 0.8434  

C-pH 1.59E + 05 1 1.59E + 05 0.8234 0.3755  

AB 6.88E + 05 1 6.88E + 05 3.56 0.0746  

AC 1.79E + 06 1 1.79E + 06 9.25 0.0067  

BC 1,197.02 1 1,197.02 0.0062 0.9381  

A2 64,001.6 1 64,001.59 0.3309 0.5719  

B2 5.54E + 05 1 5.54E + 05 2.86 0.107  

C2 2.68E + 06 1 2.68E + 06 13.86 0.0014  

ABC 13,824.3 1 13,824.26 0.0715 0.7921  

Residual 3.68E + 06 19 1.93E + 05      

Lack of Fit 2.94E + 05 4 73,456.79 0.3258 0.8563 not significant

Pure Error 3.38E + 06 15 2.25E + 05      

Cor Total 1.01E + 07 29        

Std. Dev. 439.82 R² 0.9653
Adjusted R2

0.9433
Predicted R2 

0.8417
Adeq Precision 

5.481
Mean 4,857.68 C.V. % 9.05

Table 5. ANOVA Results and Adequacy of the Quadratic Models for Biogas Using BBD

Source Sum of squares df Mean square F-value p-value  

Biogas-Model 4.13E + 06 9 4.58E + 05 9.02 < 0.0001 significant

A-HRT 98,404.39 1 98,404.39 1.94 0.1793  

B-OLR 2.11E + 05 1 2.11E + 05 4.16 0.0549  

C-pH 257.03 1 257.03 0.0051 0.944  

AB 4.64E+05 1 4.64E + 05 9.14 0.0067  

AC 1.67E + 06 1 1.67E + 06 32.83 < 0.0001  

BC 1.02E + 06 1 1.02E + 06 20.03 0.0002  

A2 3.55E + 05 1 3.55E + 05 7 0.0155  

B2 2.32E + 05 1 2.32E + 05 4.57 0.0451  

C2 1.33E + 05 1 1.33E + 05 2.62 0.1213  

Residual 1.02E + 06 20 50,795.58      

Lack of Fit 1.50E + 05 3 49,990.4 0.9814 0.4248 not significant

Pure Error 8.66E + 05 17 50,937.67      

Cor Total 5.14E + 06 29        

Std. Dev. 225.38 R² 0.9802
Adjusted R2

0.9713
Predicted R2

0.8345
Adeq Precision 

14.656
Mean 4,919.48 C.V. % 4.58
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point identified (Fig. 1 and 2) indicated the true representation 
of the regression Eq. (4)-(11). The 3D surface showed the model’s 
variation with two factor levels (HRT and OLR) whereas the other 
factor level (pH) was kept constant. In addition, the plots depict 
the sensitivity of the responses due to the change of factor levels 
with the degree of their interactions. Fig. 1(a) and 1(b) illustrated 
the maximum COD removal (72-88%) and biogas produced 
(3,500-5,500 mL/d) at a pH of 7 using CCD. While, Fig. 2(a) and 
2(b) also depicts response surface plots at a pH of 7 for maximum 
COD removal (77-90%) and biogas production (3,714-5,600 mL/d) 
using BBD. All the 3D surface plots depict the effect of HRT and 
OLR on COD removal and biogas production at alkaline medium. 
The optimization of the process variables was aimed at finding 
the levels of the factors to obtain a maximum desirability for all 
the responses within the design space.

3.4. Numerical Evaluation of the Effect of pH, OLR and 
HRT on the Response

Table S1 and Fig. 3 shows some of the CCD suggested optimal 

conditions using the numerical analysis. Likewise, Table S2 and 
Fig. 6 do the same for the BBD response model. Comparatively, 
high desirability performance of the BBD (94%) was obtained as 
compared to the use of the CCD at 92%. However, almost the 
same optimum conditions such as HRT (15 h) and pH (7) were 
obtained by using the CCD and BBD, except the OLR that differed 
as 3.5 kg.m-3.d-1 and 3 kg.m-3.d-1, respectively.

A series of mechanism occurred in the reactor to enhance the 
microbial community in breaking down the organic matter. These 
mechanisms enhanced the biodegradability to generate more biogas 
during the digestion process, which includes the acidogenesis and 
methanogenesis that occurred at different pH levels. The control 
of the pH was very critical to detect the abnormalities in the system 
in respect of acidity and alkalinity, which might inhibit the system. 
From the results, it was found that high OLR (10 kg.m-3.d-1) at 
low HRT (8 h) could result in high VFA, which might have inhibited 
the biogas production and decrease the degradability of the COD. 
Thus, within the pH range of 6.5-7.2, the COD removal and biogas 
production increased, whilst below 6.5, the efficiency of the system 
was inhibited. This agree with the report by Lettinga and Pol [15 

a b

Fig. 1. CCD -response surface plot effects of HRT and OLR at constant pH (7) on (a) COD removal (b) biogas production on 3D surface plot.

a b

Fig. 2. BBD -response surface plot effects of HRT and OLR at constant pH (7) on (a) COD removal (b) on biogas production on 3D surface plot.
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Lettinga and Pol [15] and Torkian et al. [18 Torkian et al. [18]. 
They reported that a decrease in pH below 6.5 could hinder the 
methanogenic microorganism activities thus declining biogas 
production. At a lower pH, an accumulation of VFA could occur 
and a minimal buffering capacity of the UASB is induced thereby 
inhibiting the methanogenic activity.

The OLR rate describes the liquid flowrate and contaminant 
concentration and can be defined as the mass of the pollutant 
introduced in a unit volume of the reactor per unit time. As such, 
this parameter integrates reactor characteristics, operational charac-
teristics, and bacterial mass and activity into the volume of media 
Ruiz et al. [19]. plays a significant role on the performance of 
the UASB reactor. With an increase in the OLR, an increase in 
the biogas production was experienced. However, at an OLR above 
5 kg.m-3.d-1 and at a shorter HRT of less than 8 h was found to 
be detrimental to the methanogens. Thus, the high OLR (10 
kg.m-3.d-1) resulted in poor performance of the system, due to over-
load of the substrate, which supersedes the microorganism. At 
a lower HRT, there is a reduction in the contact time for the breaking 
down of the organic components, therefore impeding the perform-
ance of methanogens present in the system such that the conversion 
of the high COD or the acetates into biogas is limited. Operating 
at an optimal region of the OLR (3-5 kg.m-3.d-1) was found suitable 
to prevent the washout of the organic matter in the effluent and 
increased the treatable desirability of the system. At higher OLR, 
a possible washout of organic matter could occur.

The HRT is considered an important operating paramter, such 
that its effectiveness is the controlling factor with respect to the 
entire UASB performance. The observation of a long HRT (18 h) 
could lead to a siutuation in the reactor whereby the microorganism 
would compete over the available the substrate in other to withstand 
adjust to the discomfort. This phenomenon can affect the growth 
rate of the microbial community in the reactor, even though a 
higher yield of biogas and degradability could be achieved as seen 
with a HRT of 8-15 h.

Fig. 3. Confirming the models prediction at HRT (15 h), OLR (3.5 kg.m-3･

d-1) and pH (6.5).

A confirmation test (Fig. 3) was carried out with the selected 
optimum conditions in Tables S1 and S2 with highest desirability 
through the numerical optimization analysis ramp plots (Fig. S1 
and S2) provided in the supplementary section. It was found that 

the BBD based model predicted values agree with the experimental 
results with less than 2% disparities. Whereas, the CCD based 
model predictions was greater in terms of COD removal (82.6 ± 
1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 
< 5,800 mL/d) which was less than the experimental results. This 
made the BBD to be more superior over the CCD.

4. Conclusions

Optimization of multiple variables is a major concern in wastewater 
treatment processes to the obtainability of the desirable discharge 
effluent limits. This research paper was aimed at comparing the 
applicability of CCD and BBD for the optimization of HRT, pH 
and OLR in determining their desirability efficiency in a UASB 
for the treatment of wastewaters. The two response surface designs 
investigated produced almost the same optimum conditions: HRT 
(15 h) and pH (7), except the OLR that differed as 3.5 kg.m-3.d-1 
and 3 kg.m-3.d-1 for CCD and BBD, respectively. Both designs were 
found suitable in predicting high treatability performance of the 
UASB above 90%. Based on the confirmation test, the BBD model 
prediction (biogas 5,955.4 ± 225.3 mL/d; COD 81.5 ± 1.014%) 
was found to be in good agreement with the experimental results 
(biogas 5,800 mL/d; COD 80.8%). Conversely, the BBD produced 
a high desirability efficiency of 94% as opposed to the CCD of 
92%. The models obtained were found to be predictive, adequate 
and significant at 95% confidence level. RSM is an effective and 
economically viable alternative technique that can be adapted for 
optimizing various wastewater treatment processes to favourably 
maximise the output. Operating the UASB at HRT (8 to 15 h), 
OLR (3 to 5 kg.m-3.d-1) and pH (6.5 to 7.2) were found to be workable 
conditions to maximise the outputs. Furthermore, the UASB is 
an effective and reliable process for the treatment and generation 
of biogas from wastewaters. In addition, this area can be of economic 
interest to stakeholders for protecting the environment and produc-
ing green energy as well as reducing the footprint of greenhouse 
gases.
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