• Title/Summary/Keyword: response site

Search Result 1,498, Processing Time 0.032 seconds

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

Effect That Type Gets in Consumer Communication : Product Participation Level and Internet Word-of-mouth -Laying stress on purchase review of product and Internet shopping mall by FCB Model- (제품 관여수준과 인터넷 구전메시지 유형이 소비자 커뮤니케이션에 미치는 영향 -FCB 모델에 따른 제품과 인터넷 쇼핑몰의 구매 댓글을 중심으로-)

  • Chin, Hong-Kun;Lee, Eun-Joo
    • Management & Information Systems Review
    • /
    • v.22
    • /
    • pp.85-115
    • /
    • 2007
  • Following is discovered in this study by some. First, attribute(product/non- product) of that truth that get through experiment of this study is WOM deduced result that have statistical meaning in dependent variable which is public trust only in this study. Specially, information by word of mouth type received High positive response more with non-product information by word of mouth attribute than the product attribute in all experiment products that is parted according to involvement. Consumer's response by involvement level of product can affect for site attitude, public trust, and intention to purchase by second. For example, consumer's site attitude has induced the most positive response, and can confirm positive response of High consumer most in that involvement sensitivity product in that participation reason type product and could confirm response that is the most positive in that involvement reason product even if there is for intention to purchase. Result of this study is grasped that have High mean value relatively in site attitude, product attitude, information by word of mouth effect, public trust, brand attitude, purchase intention etc. generally that product involvement and information by word of mouth attribute are interrelation by third. This can change fairly data processing process according to consumer's Involvement Level, behavior deterministic process, consumer's action with attitude formation process, and involvement for products. High occasion than is low incline more efforts in information retrieval and is discreet result such as study finding of produce.

  • PDF

Shaking table test on seismic response and failure characteristics of ground fissures site during earthquakes

  • Chao, Zhang;Xuzhi, Nie;Zhongming, Xiong;Yuekui, Pang;Xiaolu, Yuan;Yan, Zhuge;Youjun, Xu
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.307-319
    • /
    • 2023
  • Ground fissures have a huge effect on the integrity of surface structures. In high-intensity ground fissure regions, however, land resource would be wasted and city building and economic development would be limited if the area avoiding principle was used. In view of this challenge, to reveal the seismic response and seismic failure characteristics of ground fissure sites, a shaking table test on model soil based on a 1:15 scale experiment was carried out. In the test, the spatial distribution characteristics of acceleration response and Arias intensity were obtained for a site exposed to earthquakes with different characteristics. Furthermore, the failure characteristics and damage evolution of the model soil were analyzed. The test results indicated that, with the increase in the earthquake acceleration magnitude, the crack width of the ground fissure enlarged from 0 to 5 mm. The soil of the hanging wall was characterized by earlier cracking and a higher abundance of secondary fissures at 45°. Under strong earthquakes, the model soil, especially the soil near the ground fissure, was severely damaged and exhibited reduced stiffness. As a result, its natural frequency also decreased from 11.41 Hz to 8.05 Hz, whereas the damping ratio increased from 4.8% to 9.1%. Due to the existence of ground fissure, the acceleration was amplified to nearly 0.476 m/s2, as high as 2.38 times of the input acceleration magnitude. The maximum of acceleration and Arias intensity appeared at the fissure zone, which decreased from the main fissure toward both sides, showing hanging wall effects. The seismic intensity, duration and frequency spectrum all had certain effects on the seismic response of the ground fissure site, but their influence degrees were different. The seismic response of the site induced by the seismic wave that had richer low-frequency components and longer duration was larger. The discrepancies of seismic response between the hanging wall and the footwall declined obviously when the magnitude of the earthquake acceleration increased. The research results will be propitious to enhancing the utilizing ratio of the limited landing resource, alleviation of property damages and casualties, and provide a good engineering application foreground.

A Study on the Establishment and Utilization of e-SOP System based on One-site Action Manual of Local Government (현장조치 행동매뉴얼 기반의 e-SOP 시스템 구축 및 활용 방안 연구)

  • Duckgil Kim;Yuri Kim;Daewon Jang;Yonsoo Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.266-271
    • /
    • 2024
  • In order to minimize damage from disasters, rapid initial measures using disaster response manuals are needed. However, the existing disaster response manual is written in the form of a vast booklet, so there is a limit to accurately understanding the contents of the manual and using it for disaster response. Therefore, this study established an e-SOP system based on the disaster response manual, and suggested countermeasures using the e-SOP in the event of a disaster. Based on the guidelines for preparing the on-site action manual, the main functions of the e-SOP consisted of situation propagation, situation reporting, and situation management. In order to increase the on-site responsiveness and usability of the system, the bottom-up reporting system was strengthened so that the person in charge could report the response situation of the site to the situation room using the situation reporting function. In addition, the situation room was able to identify and manage the progress of disaster response work and support decision-making through situation reports delivered from the field.

INTERPRETATION OF POLARIZATION RESPONSES OF URBAN AREA

  • Kang Moon-Kyung;Yoon Wang-Jung;Kim Kwang-Eun;Choi Hyun-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.534-537
    • /
    • 2005
  • Polarization of the radar wave refers to the ellipticity angle and orientation angle of the polarization ellipse. An evaluation of the polarization response can help understand the scattering mechanisms involved for a particular area of interest or provide information for image classification and algorithm section. C- and L-band polarization responses measured at urban area show the results that the polarization behavior for dihedral comer reflector or short, thin cylinder reflector appears at located in city streets or buildings site which are lined up and the polarization behavior for a large conducting sphere appears at parts of test site particularly river, flat, and vegetated areas. Also, the co- and cross-polarized response graphs and polarimetric parameters are discussed.

  • PDF

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Arrival direction effects of travelling waves on nonlinear seismic response of arch dams

  • Akkose, Mehmet
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.179-199
    • /
    • 2016
  • The aim of this study is to investigate arrival direction effects of travelling waves on non-linear seismic response of arch dams. It is evident that the seismic waves may reach on the dam site from any direction. Therefore, this study considers the seismic waves arrive to the dam site with different angles, ${\theta}=0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ for non-linear analysis of arch dam-water-foundation interaction system. The N-S, E-W and vertical component of the Erzincan earthquake, on March 13, 1992, is used as the ground motion. Dam-water-foundation interaction is defined by Lagrangian approach in which a step-by-step integration technique is employed. The stress-strain behavior of the dam concrete is idealized using three-dimensional Drucker-Prager model based on associated flow rule assumption. The program NONSAP is employed in response calculations. The time-history of crest displacements and stresses of the dam are presented. The results obtained from non-linear analyses are compared with that of linear analyses.

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.

Dynamic stability evaluation of nail stabilised vertical cuts in various site classes

  • Amrita;B.R. Jayalekshmi;R. Shivashankar
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.421-437
    • /
    • 2024
  • The soil nailing method entails the utilisation of nails to reinforce and stabilise a zone of soil mass. This is widely used for various applications due to its effective performance under various loading conditions. The seismic response of 6m high vertical soil-nailed cut in various site classes under dynamic excitations has been investigated in this study considering various lengths and inclinations of nails. The influence of frequency content of dynamic excitation on the response of structure has been assessed through finite element analysis using time history data of three different earthquakes. The seismic stability of the nailed cut in retaining soil in various sites under El Centro, Kobe and Trinidad earthquake ground motion is evaluated based on maximum acceleration response, maximum horizontal deformation, earth pressure distribution on the wall and maximum axial force mobilised in nails. The optimum nail inclination is identified as 15° and a minimum nail length ratio of 0.7 is essential for a stable vertical cut under dynamic excitations.