Browse > Article
http://dx.doi.org/10.12989/gae.2019.18.6.639

Viscous damping effects on the seismic elastic response of tunnels in three sites  

Sun, Qiangqiang (Institute of Disaster Prevention)
Bo, Jingshan (Institute of Disaster Prevention)
Dias, Daniel (Laboratory 3SR, Grenoble Alpes University)
Publication Information
Geomechanics and Engineering / v.18, no.6, 2019 , pp. 639-650 More about this Journal
Abstract
Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.
Keywords
tunnel; seismic response; Rayleigh damping; small strain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sun, Q.Q., Dias, D. and Sousa, L.R. (2019), "Impact of an underlying soft soil layer on tunnel lining in seismic conditions", Tunn. Undergr. Sp. Technol., 90, 293-308. https://doi.org/10.1016/j.tust.2019.05.011.   DOI
2 Tong, L. and Wang, Y.H. (2015), "DEM simulation of shear modulus an damping ratio of sand with emphasis on the effects of particle number, particle shape, and aging", Acta Geotechnica, 10(1), 117-130. https://doi.org/10.1007/s11440-014-0331-2.   DOI
3 Tsai, C.C. and Hashash, Y.M.A. (2008), "A novel framework integrating downhole array data and site analysis to extract dynamic soil behavior", Soil Dyn. Earthq. Eng., 28(3), 181-197. https://doi.org/10.1016/j.soildyn.2007.06.008.   DOI
4 Tsai, C.C., Park, D. and Chen, C.W. (2014), "Selection of the optimal frequencies of viscous damping formulation in nonlinear time-domain site response analysis", Soil Dyn. Earthq. Eng., 67, 353-358. https://doi.org/10.1016/j.soildyn.2014.10.026.   DOI
5 Tsinidis, G., Pitilankis, K. and Trikalioti, A. D. (2014), "Numerical simulation of round robin numerical test on tunnels using a simplified kinematic hardening model", Acta Geotechnica, 9, 641-659. https://doi.org/10.1007/s11440-013-0293-9.   DOI
6 Badsar, B.A., Schevenels, M., Haegeman, W. and Degrande, G. (2010), "Determination of the material damping ratio in the soil from SASW tests using the half-power bandwidth method", Geophys. J. Int., 182(3), 1493-1508. https://doi.org/10.1111/j.1365-246X.2010.04690.x.   DOI
7 Amorosi, A., Boldini, D. and Elia, G. (2010), "Parametric study on seismic ground response by finite element modeling", Comput. Geotech., 37(4), 515-528. https://doi.org/10.1016/j.compgeo.2010.02.005.   DOI
8 Amorosi, A., Boldini, D. and Falcone G. (2014), "Numerical predication of tunnel performance during centrifuge dynamic tests", Acta Geotechnica, 9(4), 581-596. https://doi.org/10.1007/s11440-013-0295-7.   DOI
9 Bilotta, E., Lanzano, G., Madabhushi, S.P.G. and Silvestri, F. (2014), "A numerical round robin on tunnels under seismic actions", Acta Geotechnica, 9(4), 563-579. https://doi.org/10.1007/s11440-014-0330-3.   DOI
10 Bobet, A. (2010), "Drained and undrained response of deep tunnels subjected to farfield shear loading", Tunn. Undergr. Sp. Technol., 25(1), 21-31. https://doi.org/10.1016/j.tust.2009.08.001.   DOI
11 Brennan, A.J., Thusyanthan, N.I. and Madabhushi, S.P.G. (2005), "Evaluation of shear modulus and damping in dynamic centrifuge tests", J. Geotech. Geoenviron. Eng., 131(12), 1488-1497. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1488).   DOI
12 Carlton, B.D. and Pestana, J.M. (2016), "A unified model for estimating the in-situ small strain modulus of clays, silts, sands, and gravels", Soil Dyn. Earthq. Eng., 88, 345-355. https://doi.org/10.1016/j.soildyn.2016.01.019.   DOI
13 Chen, D.H., Du, C.B., Yuan, J.W. and Hong, Y.W. (2012), "An investigation into the influence of damping on the earthquake response analysis of a high arch dam", J. Earthq. Eng., 16(3), 329-349. https://doi.org/10.1080/13632469.2011.638697.   DOI
14 Cilingir, U. and Madabhushi, S.P.G. (2011), "A model study on the effects of input motion on the seismic behavior of tunnels", Soil Dyn. Earthq. Eng., 31(3), 452-462. https://doi.org/10.1016/j.soildyn.2010.10.004.   DOI
15 Conti, R., Viggiani, G.M.B. and Perugini, F. (2014), "Numerical modelling of centrifuge dynamic tests of circular tunnels in dry sand", Acta Geotechnica, 9(4), 597-612. https://doi.org/10.1007/s11440-013-0286-8.   DOI
16 Groholski, D.R., Hashash, Y.M.A. and Matasovic, N. (2014), "Learning of pore pressure response and dynamic soil behavior from downhole array measurements", Soil Dyn. Earthq. Eng., 61, 40-56. https://doi.org/10.1016/j.soildyn.2014.01.018.   DOI
17 Dinesh, S.V., Sitharam, T.G. and Vinod, J.S. (2004), "Dynamic properties and liquefaction behavior of granular materials using discrete element method", Current Sci., 87(10), 1379-1387.
18 Gomes, R.C. (2014), "Numerical simulation of the seismic response of tunnels in sand with an elastoplastic model", Acta Geotechnica, 9(4), 613-629. https://doi.org/10.1007/s11440-013-0287-7.   DOI
19 Guo, X., Wong, Y.L. and Yuan, Y.F. (2002), "Estimation of damping ratio of soil sites using microtremor", Earthq. Eng. Eng. Vib., 1(1), 45-49. https://doi.org/10.1007/s11803-002-0006-0.   DOI
20 Groholski, D.R. and Hashash Y.M.A. (2013), "Development of an inverse analysis framework for extracting dynamic soil behavior and pore pressure response from downhole array measurements", Int. J. Numer. Anal. Meth. Geomech., 37(12), 1867-1890. https://doi.org/10.1002/nag.2172.   DOI
21 Hardyniec, A. and Charney, F. (2015), "An investigation into effects of damping and nonlinear geometry models in earthquake engineering analysis", Earthq. Eng. Struct. Dyn., 44, 2695-2715. https://doi.org/10.1002/eqe.2604.   DOI
22 Hashash, Y.M.A. and Park, D. (2001), "Non-linear onedimensional seismic ground motion propagation in the Mississippi embayment", Eng. Geol., 62(1-3), 185-206. https://doi.org/10.1016/S0013-7952(01)00061-8.   DOI
23 Hashash, Y.M.A. and Park, D. (2002), "Viscous damping formulation and high frequency motion propagation in nonlinear site response analysis", Soil Dyn. Earthq. Eng., 22(7), 611-624. https://doi.org/10.1016/S0267-7261(02)00042-8.   DOI
24 Hatzigeorgiou, G.D. and Beskos, D.E. (2010), "Soil-structure interaction effects on seismic inelastic analysis of 3-D tunnels", Soil Dyn. Earthq. Eng., 30(9), 851-861. https://doi.org/10.1016/j.soildyn.2010.03.010.   DOI
25 Kontoe, S., Zdravkovic, L., Potts, D.M. and Menkiti, C.O. (2011), "On the relative merits of simple and advanced constitutive models in dynamic analysis of tunnels", Geotechnique, 61(10), 815-829. http://dx.doi.org/10.1680/geot.9.P.141.   DOI
26 Hleibieh, J., Wegener, D. and Herle, I. (2014), "Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model", Acta Geotechnica, 9(4), 631-640. https://doi.org/10.1007/s11440-013-0294-8.   DOI
27 Hudson, M., Idriss, M. and Beikae, M. (1994), "User manual for QUAD4M: A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base," University of California, Berkeley, California, U.S.A.
28 Hu, Y.X. (2006), Earthquake Engineering, Seismological Press, Beijing, China.
29 Idriss, I.M., Lysmer, J. and Hwang, R. (1973), "QUAD4: A computer program for evaluating the seismic response of soil structures by variable finite element procedures," University of California, Berkeley, California, U.S.A.
30 Itasca. (2005), Software Manual of FLAC Version5.0, Itasca Consulting Group.
31 Kokusho, T. (1980), "Cyclic triaxial test of dynamic soil properties for wide strain range", Soil. Found., 20(2), 45-60. https://doi.org/10.3208/sandf1972.20.2_45.   DOI
32 Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey.
33 Kwok, A.O.L., Stewart, J.P., Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z.Z. and Yang, Z.H. (2007), "Use of exact solution of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures", J. Geotech. Geoenviron. Eng., 133(11), 1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385).   DOI
34 Wang, Z.Z. and Zhang, Z. (2013), "Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake", Soil Dyn. Earthq. Eng., 45, 45-55. https://doi.org/10.1016/j.soildyn.2012.11.002.   DOI
35 Visone, C., Bilotta, E. and Magistris, F.S.D. (2010), "Onedimensional ground response as a preliminary tool for dynamic analyses in geotechnical earthquake engineering", J. Earthq. Eng., 14(1), 131-162. https://doi.org/10.1080/13632460902988950.   DOI
36 Li, Z., Escoffier, S. and Kotronis, P. (2013), "Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand", Soil Dyn. Earthq. Eng., 52, 77-87. https://doi.org/10.1016/j.soildyn.2013.05.004.   DOI
37 Lings, M.L. and Greening, P.D. (2001), "A novel bender/extender element for soil testing", Geotechnique, 51(8), 713-717.   DOI
38 Vucetic, M., Lanzo, G. and Doroudian, M. (1998), "Damping at small strains in cyclic simple shear test", J. Geotech. Geoenviron. Eng., 124(7), 585-594. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(585).   DOI
39 Wang, J.N. (1993), Seismic Design of Tunnels: A State-of-the-Art Approach, Parsons, Brinckerhoff, Quade and Douglas Inc., New York, U.S.A.
40 Wang, J.T. (2011), "Investigation of damping in arch dam-waterfoundation rock system of Mauvoisin arch dam", Soil Dyn. Earthq. Eng., 31, 33-44.   DOI
41 Yu, H.T., Chen, J.T., Bobet, A. and Yuan, Y. (2016), "Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake", Tunn. Undergr. Sp. Technol., 54, 102-116. https://doi.org/10.1016/j.tust.2016.02.008.   DOI
42 Zhang, C.H., Pan, J.W. and Wang, J.T. (2009), "Influence of seismic input mechanisms and radiation damping on arch dam response", Soil Dyn. Earthq. Eng., 29(9), 1282-1293. https://doi.org/10.1016/j.soildyn.2009.03.003.   DOI
43 Park, D. and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", J. Earthq. Eng., 8(2), 249-274.   DOI
44 Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Div., 95(4), 859-877.
45 Manica, N., Ovando, E. and Botero, B. (2014), "Assessment of damping models in FLAC", Comput. Geotech., 59, 12-20. https://doi.org/10.1016/j.compgeo.2014.02.007.   DOI
46 Ni, B. (2007), "Implementation of a bubble model in Flac and its application in dynamic analysis," Ph.D. Thesis, University of Auckland, Auckland, New Zealand.
47 Park, K.H., Tantayopin, K., Tontavanich, B. and Owatsiwong, A. (2009), "Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions: A revisit", Tunn. Undergr. Sp. Technol., 24(2), 231-235. https://doi.org/10.1016/j.tust.2008.07.001.   DOI
48 Peck, R.B., Hendron, A.J. and Mohraz, B. (1972), "State of the art of soft ground tunnelling", Proceedings of the Rapid Excavation and Tunnelling Conference, Chicago, Illinois, U.S.A., June.
49 Penzien, J. (2000), "Seismically induced racking of tunnel linings", Earthq. Eng. Struct. Dyn., 29(5), 689-691. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5%3C683::AID-EQE932%3E3.0.CO;2-1.   DOI
50 Phillips, C. and Hashash, Y.M.A. (2009), "Damping formulation for nonlinear 1D site response analyses", Soil Dyn. Earthq. Eng., 29(7), 1143-1158. https://doi.org/10.1016/j.soildyn.2009.01.004.   DOI
51 Priestley, M.J.N. and Grant, D.N. (2005), "Viscous damping in seismic design and analysis", J. Earthq. Eng., 9(Spec2), 229-255.   DOI
52 Liu, X.R., Li, D.L., Wang, J.B. and Wang, Z. (2015), "Surrounding rock pressure of shallow-buried bias tunnels under earthquake", Geomech. Eng., 9(4), 427-445. https://doi.org/10.12989/gae.2015.9.4.427.   DOI
53 Sun, Q.Q., Bo, J.S., Li, X.B. and Wang, X. (2016b), "Comparative study of viscous damping formulation in time-domain site response analysis", Earthq. Eng. Eng. Dyn., 36, 171-179.
54 Zhang, B., Wang, X., Zhang, J.S. and Meng, F. (2017), "Threedimensional limit analysis of seismic stability of tunnel face with quasi-static method", Geomech. Eng., 13(2), 301-318. https://doi.org/10.12989/gae.2017.13.2.301.   DOI
55 Rayhani, M.H.T. and Naggar, M.H.E. (2008), "Dynamic properties of soft clay and loose sand from seismic centrifuge tests", Geotech. Geol. Eng., 26(5), 593-602. https://doi.org/10.1007/s10706-008-9192-5.   DOI
56 Sedarat, H., Kozak, A., Hashash, Y.M.A., Shamsabadi, A. and Krimotat, A. (2009), "Contact interface in seismic analysis of circular tunnels", Tunn. Undergr. Sp. Technol., 24(4), 482-490. https://doi.org/10.1016/j.tust.2008.11.002.   DOI
57 Senetakis, K., Anastasiadis, A. and Pitilakis, K. (2015), "A comparison of material damping measurements in resonant column using the steady-state and free-vibration decay method", Soil Dyn. Earthq. Eng., 74, 10-13. https://doi.org/10.1016/j.soildyn.2015.03.009.   DOI
58 Sevim, B. (2013), "Assessment of 3D earthquake response of the Arhavi Highway tunnel considering soil-structure interaction", Comput. Concrete, 11(1), 51-61. https://doi.org/10.12989/cac.2013.11.1.051.   DOI
59 Shih, J.Y., Thompson, D.J. and Zervos, A. (2016), "The effect of boundary conditions, model size and damping models in the finite element modeling of a moving load on track/ground system", Soil Dyn. Earthq. Eng., 89, 12-27. https://doi.org/10.1016/j.soildyn.2016.07.004.   DOI
60 Sun, Q.Q., Bo, J.S., Sun, Y.W. and Zhang, Z.P. (2016a), "A stateof-the-art review of seismic response analysis of tunnels", World Earthq. Eng., 32, 159-169.
61 Sun, Q.Q. and Bo, J.S. (2017), "Effect of Rayleigh damping matrix on seismic response analysis of deep soft site", Chin. Earthq. Eng., 39, 506-510.
62 Sun, Q.Q. and Dias, D. (2019a), "Assessment of stress relief during excavation on the seismic tunnel response by the pseudostatic method", Soil Dyn. Earthq. Eng., 117, 384-397. https://doi.org/10.1016/j.soildyn.2018.09.019.   DOI
63 Sun, Q.Q. and Dias, D. (2019b), "Seismic behavior of circular tunnels: Influence of the initial stress state", Soil Dyn. Earthq. Eng., 126, 105808. https://doi.org/10.1016/j.soildyn.2019.105808.   DOI