• Title/Summary/Keyword: response functions analysis

Search Result 794, Processing Time 0.028 seconds

Group Sequential Tests Using both Type I and Type II Error Spending Rate Functions on Binomial Response (이산형 반응변수에서 오류 분배율 함수를 적용한 집단축차 검정)

  • Kim, Dong-Uk;Nam, Jin-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.127-140
    • /
    • 2010
  • In interim analysis, group sequential tests are widely used for the ethical, scientific, and economic reasons. In this paper, we propose the group sequential tests using both type I and type II error spending rate functions when the response variable is discrete, especially binomial distribution, in the interim analysis. In addition, we propose new error spending rate function which covers the formerly proposed. Our method has good property that is flexible, fast and easily applicable. A numerical simulations are carried out to evaluate our method and it shows good performance.

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면분석법을 이용한 FRP Leaf Spring의 최적설계)

  • 임동진;이윤기;김민호;윤희석
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • The present paper is concerned with the optimum design of taper spring, in which the static spring rate of the fiber-reinforcement composite material spring is fitted to that of the steel leaf spring. The thickness and width of springs were selected as design variables. The object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-glass/epoxy and carbon/epoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. The result of the static spring rates show that optimized composite leaf springs agree with steel leaf spring within 1%.

Structural Dynamic System Reconstruction (구조물 동적시스템 재현기법)

  • Kim, Hyeung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.308-312
    • /
    • 2002
  • To determine the natural frequencies and damping ratios of composite laminated plates, we present an officient modal parameter estimation technique by developing residual spectrum based structural system reconstruction. The modal parameters can be estimated from poles and residues of the system transfer functions, derived from the state space system matrices. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the modal coordinates of the structural dynamic system reconstructed from the experimental frequency response functions. These results are compared with those of finite element analysis and single-degree-of-freedom curve fitting.

Shape Optimization Technique for Thin Walled Beam of Automotive Structures Considering Vibration

  • Lee, Sang-Beom;Yim, Hong-Jae;Pyun, Sung-Don
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.63-70
    • /
    • 2002
  • In this paper, an optimization technique for thin walled beams of vehicle body structure is proposed. Stiffness of thin walled beam structure is characterized by the thickness and typical section shape of the beam structure. Approximate functions for the section properties such as area, area moment of inertia, and torsional constant are derived by using the response surface method. The approximate functions can be used for the optimal design of the vehicle body that consists of complicated thin walled beams. A passenger car body structure is optimized to demonstrate the proposed technique.

A Study on Mathematical Modeling of Forcing Function for the Piping Vibration of Petrochemical Plant Design (플랜트 설계 시 배관진동을 유발하는 가진 함수의 수학적 모델링)

  • 민선규;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.591-595
    • /
    • 1997
  • In analysis of piping vibration of petrochemical plant, the forcing functions mainly depend upon the equipment working mechanism and vibration resources in the piping systems. In general, harmonic function is used for the system with rotary equipments. Mechanical driving frequencies, wave functions, and response spectrum are used for reciprocating compressors, surge vibration of long transfer piping, and seismic/wind vibration, respectively. In this study, for the spray injection case inside the pipe, forcing function was modeled, in which two different fluids are distributed uniformly. To confirm the results, the scheme used for the forcing function was applied for real piping system. The vibration mode of the real system was consistent with the 4th mode obtained by simulation using the forcing function formulated in this study.

  • PDF

Timing Analysis of Discontinuous RC Interconnect Lines

  • Kim, Tae-Hoon;Song, Young-Doo;Eo, Yung-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.8-13
    • /
    • 2009
  • In this paper, discontinuous interconnect lines are modeled as a cascaded line composed of many uniform interconnect lines. The system functions of respective uniform interconnect lines are determined, followed by its time domain response. Since the time domain response expression is a transcendental form, the waveform expression is reconfigured as an approximated linear expression. The proposed model has less than 2% error in the delay estimation.

Sloshing Impact Response Analysis for Insulation System of LNG CCS Considering Elastic Support Effects of Hull Structures (선체구조의 탄성지지 효과를 고려한 LNG 운반선 방열구조의 슬로싱 충격응답 해석법에 관한 연구)

  • Nho, In Sik;Ki, Min-Seok;Kim, Sung-Chan;Lee, Jang Hyun;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • The sloshing pressure acting on a membrane-type LNG CCS is a typical irregular impact load, and the structural response of a tank system induced by sloshing also shows very complex behavior, including fluid structure interaction. Therefore, it is not easy to accurately estimate the sloshing impact pressures and resulting structural response. Moreover, a huge time consuming process to deal with the enormous pressure data obtained during a model tank test and the following structural analysis would be inevitable. To reduce the computation time for structural analysis, in this study, a rational structural modeling strategy was considered, and a simplified scheme to analyze the dynamic structural responses of an LNG CCS was introduced, which was based on the concept of the linear combination of the triangular response functions obtained by a transient response analysis of structures under unit triangular impact pressure. A structural analysis of a real Mark III membrane type insulation system under the sloshing impact pressure time histories obtained by model tests was performed using the various proposed structural models and simplified analysis scheme. The results were investigated in detail, including the elastic support effects of the hull structure.

Analysis of Key Genes and Pathways Associated with Colorectal Cancer with Microarray Technology

  • Liu, Yan-Jun;Zhang, Shu;Hou, Kang;Li, Yun-Tao;Liu, Zhan;Ren, Hai-Liang;Luo, Dan;Li, Shi-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1819-1823
    • /
    • 2013
  • Objective: Microarray data were analyzed to explore key genes and their functions in progression of colorectal cancer (CRC). Methods: Two microarray data sets were downloaded from Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified using corresponding packages of R. Functional enrichment analysis was performed with DAVID tools to uncover their biological functions. Results: 631 and 590 DEGs were obtained from the two data sets, respectively. A total of 32 common DEGs were then screened out with the rank product method. The significantly enriched GO terms included inflammatory response, response to wounding and response to drugs. Two interleukin-related domains were revealed in the domain analysis. KEGG pathway enrichment analysis showed that the PPAR signaling pathway and the renin-angiotensin system were enriched in the DEGs. Conclusions: Our study to systemically characterize gene expression changes in CRC with microarray technology revealed changes in a range of key genes, pathways and function modules. Their utility in diagnosis and treatment now require exploration.

Seismic response evaluation of fixed jacket-type offshore structures by random vibration analysis

  • Abdel Raheem, Shehata E.;Abdel Aal, Elsayed M.;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • Offshore platforms in seismically active areas must be designed to survive in the face of intense earthquakes without a global structural collapse. This paper scrutinizes the seismic performance of a newly designed and established jacket type offshore platform situated in the entrance of the Gulf of Suez region based on the API-RP2A normalized response spectra during seismic events. A nonlinear finite element model of a typical jacket type offshore platform is constructed taking into consideration the effect of structure-soil-interaction. Soil properties at the site were manipulated to generate the pile lateral soil properties in the form of load deflection curves, based on API-RP2A recommendations. Dynamic characteristics of the offshore platform, the response function, output power spectral density and transfer functions for different elements of the platform are discussed. The joints deflection and acceleration responses demands are presented. It is generally concluded that consideration of the interaction between structure, piles and soil leads to higher deflections and less stresses in platform elements due to soil elasticity, nonlinearity, and damping and leads to a more realistic platform design. The earthquake-based analysis for offshore platform structure is essential for the safe design and operation of offshore platforms.

An Analysis of ${\gamma}-ray$ Energy Spectra Using the NaI(T1) Scintillation Detector in the Air and Water (NaI(T1) 섬광검출기를 이용한 공기 및 수중에서의 감마선 에너지스펙트럼 분석)

  • Kim, Eun-Sug;Park, Jae-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 1996
  • The energy spectra in the air and water of several ${\gamma}-ray$ sources such as Cr-51, Cs-137, Mn-54, Zn-65 have been investigated using the NaI(T1) scintillation detector. General response functions, which can curve fit the measured spectra, have been constructed. We have found that the constructed response functions can successfully represent the measured spectra in the water as well as in the air, It is possible, by comparing the relevant parameters of the response functions, to quantitatively characterize the changing features of the measured spectra as obtained with varying the water depth. Of the response function parameters, those which affect the shape of the full-energy Peak have most notably changed. Besides, those parameters which affect the shapes of the flat continuum, the Compton continuum and edge have also shown slight changes with varying the water depth.

  • PDF