• Title/Summary/Keyword: respiratory inhibitor

Search Result 191, Processing Time 0.023 seconds

Effect of Dietary Fat on Hepatic Mitochondrial {TEX}$F_{1}${/TEX}{TEX}$F_{0}${/TEX}ATPase Characteristics in NIDDM-prone Rat

  • Kim, Sook-Bae B.;Kim, Chang-Im
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.230-233
    • /
    • 2000
  • The present work was designed to determine whether change in fluidity of the mitochondrial membrane affects mitochondrial {TEX}$F_{1}${/TEX}{TEX}$F_{0}${/TEX}ATPase characteristics in NIDDM-prone BHE/Cdb rat. Isolated mitochondria fom BHE/Cdb rat fed a 6% coconut oil or corn oil were functionally tested by an analysis of its respiration and the coupling of this process to ATP synthesis in presence of oligomycin, a specific inhibitor of oxidative phosphorylation (OXPHOS), that binds to the {TEX}$F_{1}${/TEX}{TEX}$F_{0}${/TEX}ATPase. Mitochondria from rats fed coconut oil were more responsive to the inhibitory action of oligomycin with respect to state 3 respiration, respiratory control (RC) ratio and ADP:P (P/O) ratio than were mitochondria from rats fed corn oil. In state 3 respiration, mitochondria from rats fed coconut oil consumed less oxygen than did mitochondria from rats fed corn oil. RC ratio was lower in the mitochondria from rats fed coconut oil than was mitochondria from rats fed corn oil. In P/O ratio, the mitochondria from rats fed coconut oil had a lower P/O ratio than did mitochondria from rats fed corn oil. The data showed that the chang influidity of the mitochondrial membrane by dietary fat affected mitochondrial {TEX}$F_{1}${/TEX}{TEX}$F_{0}${/TEX}ATPase characteristics. The present study on diet differences in {TEX}$F_{1}${/TEX}{TEX}$F_{0}${/TEX}ATPase characteristics provides considerable insight into the role diets play in the control of mitochondrial function, expecially OXPHOS in NIDDM with mitochondrial defects.

  • PDF

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.

Effects of Methylglyoxal on the Growth Dynamics of Secenedesmus quadricauda (Methylglyoxal 이 Scenedesmus quadricauda 의 성장 역학에 미치는 영향)

  • Rhie, Ki-Tae
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.17-30
    • /
    • 1995
  • The growth of Scenedesmus quadricauda (Trup.) Breb. is enhanced by methylyoxal (MG), a general inhibitor of cell division, at threshold concentration in conjunction with reatment timing relative to growth stage. The stimulatory effect of MG on algal cell growth was most significant with 2.27-fold of untreated algal culture in cell number when 0.5 mM of MG was added to the algal culture at the beginning of logarithmic phase with an initial MG concentration of 0.535 mg $MG/10^6cell$. A Specific growth rates (SGRs) of MG-treated cultures were rapidly increased at the beginning of logarithmic phase with 1.89-fold of untreated algal culture. Cultures inoculated with high cell numbers of 2.4 to 4.8 X $10^4$ cells/ml were less sensitive to 0.5 mM of MG treatment. The algal cell division was ranged from 0.392 to 0.924 mg MG/106 cell. If the cell number of an algal culture at the time of inoculation was low (0.6 X $10^4$ cells/ml) and MG was added before logarithmic phase, the cell number of 0.5 mM of MG-treated cultures were lower than those of controls. In algal cultures treated with high concentrations of MG (1.0 mM and 2.0 mM), the algal growth was inhibited. Photosynthetic rate of growth-enhanced algal by 0.5 mM of MG was significantly higher than that of untreated or 1.0 mM of MG-treated algal cell, while there was no significant difference among those groups in respiratory rate. Pyruvate concentration in 0.5 mM of MG-treated culture was incrcased agter methylglyoxal trcatment.

  • PDF

The Protective Effects of Pueraria Radix against Chronic Alcohol-induced Muscle Atrophy in Rats (알콜로 유도된 흰쥐의 근위축에서 갈근(葛根)의 보호 작용과 그 기전에 대한 고찰)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Objectives Ethanol is a potent inhibitor of muscle protein synthesis. Muscle mass is regulated by the balance between rates of protein synthesis and protein breakdown. Both acute and chronic alcohol consumption inhibits synthesis to a greater extent than degradation. Protein synthesis is more intensely decreased in type II fibers than in type I fibers. Apoptosis has been shown to occur frequently in a variety of tissues in response to chronic alcohol feeding. Increased muscle fiber apoptosis has been shown in alcoholics with myopathy. Pueraria radix has been used for many disorders such as fevers, gastrointestinal disorders, muscle aches, allergies, respiratory problems, skin problems, high blood pressure, migraine headaches, lowering cholesterol and treating chronic alcoholism. We therefore tested the hypothesis that oral treatment with Pueraria radix could reduce the ethanol-induced muscle atrophy. Methods Young male Sprague-Dawley rats were orally given 25% ethanol (5 ml/kg, body weight) daily with Ethanol for 4 weeks. Normal group was similarly administrated with saline. The Rats of Pueraria radix treated group (EtOH+PR) were orally administrated Pueraria radix water extract, and rats of EtOH group were given with the vehicle only. After 4 week, the morphology of gastrocnemius and plantaris muscles were assessed by hematoxylin and eosin staining. The immunoreactivities of pre-apoptotic BAX and anti-apoptotic Bcl-2 proteins were also measured. Results The muscles from rats of EtOH group represented a significant reduction in average cross section area compared to Normal group. EtOH+PR group had increased fiber compared to the EtOH group. Moreover, to investigate the ethanol-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. The treatment with Pueraria radix (EtOH+PR) significantly decreased BAX expression and increased Bcl-2 expression 4 weeks after ethanol administration when compared with Normal group. Conclusions These results suggest that Pueraria radix water extract has protective effects on chronic alcohol induced myopathy.

Sugar and Amino Acid Transport in Yeast I. Glucose Transport during the Sporulation Stage with Reference to the Vegetative Stage. (효모세포의 당과 아미노산의 운반에 관한 연구 -I. 생장시기와 포자형성기의 포도당 운반-)

  • 민경희;권영명
    • Korean Journal of Microbiology
    • /
    • v.16 no.3
    • /
    • pp.122-130
    • /
    • 1978
  • During the sporulation stage in Saccharomyces cerevisiae J170, the incorporation of $D^{14}$ C-glucose into starved cells of sporulation stage as well as the vegetative one is appeared higher at pH 6.0. Glucose transport system, in both the vegetative and sporulation stage, is associated with "energy dependent" as the result of repression by such a respiratory inhibitor as 2, 4-dinitrophenol. The Km value of glucose uptake in vegetative stage and sporulation stage was 2.1 mM and 2.5 mM respectively, indicating that the glucose is considerably reuqired for vegetative growth. Competition and countertranspoer of glucose by frutose and galactose are more distinct in vegetative stage, comparing with sporulation stage. The main sugar components of yeast cells consists of ribose, mannose, and ${\alpha}, \;{\beta}-glucose$. Amounts of mannose is lower in the aporulation stage than that in the vegetative stage.

  • PDF

On the Mitochmria of Yeast and M-DNA (효모의 미토콘드리아와 M-DNA)

  • 홍순우
    • Korean Journal of Microbiology
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 1971
  • During the sporulation stage in Saccharomyces cerevisiae J170, the incorporation of D$^{14}$ C-glucose into starved cells of sporulation stage as well as the vegetative one is appeared higher at pH 6.0. Glucose transport system, in both the vegetative and sporulation stage, is associated with "energy dependent" as the result of repression by such a respiratory inhibitor as 2,4-dinitrophenol. The Km value of glucose uptake in vegetative stage and sporulation stage was 2.1 mM and 2.5 mM respectively, indicating that the glucose is considerably reuqired for vegetative growth. Competition and countertranspoer of glucose by frutose and galactose are more distinct in vegetative stage, comparing with sporulation stage. The main sugar components of yeast cells consists of ribose, mannose, and .apha., .betha.-glucose. Amounts of mannose is lower in the aporulation stage than that in the vegetative stage.ive stage.

  • PDF

Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Tani, Hideki;Kobayashi, Ayako;Gohda, Jin;Kawaguchi, Yasushi;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Alkattan, Abdallah
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.282-289
    • /
    • 2021
  • A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

Entomological approach to the impact of ionophore-feed additives on greenhouse gas emissions from pasture land in cattle

  • Takahashi, Junichi;Iwasa, Mitsuhiro
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • The suppressive effect of monensin as an ionophore-feed additive on enteric methane (CH4) emission and renewable methanogenesis were evaluated. To clarify the suppressive effect of monensin a respiratory trial with head cage was performed using Holstein-Friesian steers. Steers were offered high concentrate diets (80% concentrate and 20% hay) ad libitum with or without monensin, galacto-oligosaccharides (GOS) or L-cysteine. Steers that received monensin containing diet had significantly (p < 0.01) lower enteric CH4 emissions as well as those that received GOS containing diet (p < 0.05) compared to steers fed control diets. Thermophilic digesters at 55℃ that received manure from steers fed on monensin diets had a delay in the initial CH4 production. Monensin is a strong inhibitor of enteric methanogenesis, but has a negative impact on biogas energy production at short retention times. Effects of the activity of coprophagous insects on CH4 and nitrous oxide (N2O) emissions from cattle dung pats were assessed in anaerobic in vitro continuous gas quantification system modified to aerobic quantification device. The CH4 emission from dungs with adults of Caccobius jessoensis Harold (dung beetle) and the larvae of the fly Neomyia cornicina (Fabricius) were compared with that from control dung without insect. The cumulative CH4 emission rate from dung with dung insects decreased at 42.2% in dung beetles and 77.8% in fly larvae compared to that from control dung without insects. However, the cumulative N2O emission rate increased 23.4% in dung beetles even though it reduced 88.6% in fly larvae compared to dung without coprophagous insects. It was suggested that the antibacterial efficacy of ionophores supplemented as a growth promoter still continued even in the digested slurry, consequently, possible environmental contamination with the antibiotics might be active to put the negative impact to land ecosystem involved in greenhouse gas mitigation when the digested slurry was applied to the fields as liquid manure.

Bifidobacterium bifidum DS0908 and Bifidobacterium longum DS0950 Culture-Supernatants Ameliorate Obesity-Related Characteristics in Mice with High-Fat Diet-Induced Obesity

  • M. Shamim Rahman;Youri Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.96-105
    • /
    • 2023
  • Probiotic supplements have promising therapeutic effects on chronic diseases. In this study, we demonstrated the anti-obesity effects of two potential probiotics, Bifidobacterium bifidum DS0908 (DS0908) and Bifidobacterium longum DS0950 (DS0950). Treatment with DS0908 and DS0950 postbiotics significantly induced the expression of the brown adipocyte-specific markers UCP1, PPARγ, PGC1α, PRDM16 and beige adipocyte-specific markers CD137, FGF21, P2RX5, and COX2 in C3H10T1/2 mesenchymal stem cells (MSCs). In mice with high-fat diet (HFD)-induced obesity, both potential probiotics and postbiotics noticeably reduced body weight and epididymal fat accumulation without affecting food intake. DS0908 and DS0950 also improved insulin sensitivity and glucose use in mice with HFD-induced obesity. In addition, DS0908 and DS0950 improved the plasma lipid profile, proved by reduced triglyceride, low-density lipoprotein, and cholesterol levels. Furthermore, DS0908 and DS0950 improved mitochondrial respiratory function, confirmed by the high expression of oxidative phosphorylation proteins, during thermogenesis induction in the visceral and epididymal fat in mice with HFD-induced obesity. Notably, the physiological and metabolic changes were more significant after treatment with potential probiotic culture-supernatants than those with the bacterial pellet. Finally, gene knockdown and co-treatment with inhibitor-mediated mechanistic analyses showed that both DS0908 and DS0950 exerted anti-obesity-related effects via the PKA/p38 MAPK signaling activation in C3H10T1/2 MSCs. Our observations suggest that DS0908 and DS0950 could potentially alleviate obesity as dietary supplements.

Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells

  • Gweon, Bomi;Jang, Tae-Kyu;Thuy, Pham Xuan;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.170-178
    • /
    • 2022
  • The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.