Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.201

Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit  

Kandeel, Mahmoud (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University)
Yamamoto, Mizuki (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo)
Tani, Hideki (Department of Virology, Toyama Institute of Health)
Kobayashi, Ayako (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo)
Gohda, Jin (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo)
Kawaguchi, Yasushi (Research Center for Asian Infectious Diseases, Institute of Medical Science, The University of Tokyo)
Park, Byoung Kwon (Department of Microbiology, Hallym University College of Medicine)
Kwon, Hyung-Joo (Department of Microbiology, Hallym University College of Medicine)
Inoue, Jun-ichiro (The University of Tokyo)
Alkattan, Abdallah (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University)
Publication Information
Biomolecules & Therapeutics / v.29, no.3, 2021 , pp. 282-289 More about this Journal
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.
Keywords
SARS-CoV-2; COVID-19; Fusion inhibitors; Antiviral drugs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kandeel, M., Al-Taher, A., Li, H., Schwingenschlogl, U. and Al-Nazawi, M. (2018) Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Comput. Biol. Chem. 75, 205-212.   DOI
2 Kandeel, M., Yamamoto, M., Al-Taher, A., Watanabe, A., Oh-Hashi, K., Park, B. K., Kwon, H. J., Inoue, J. I. and Al-Nazawi, M. (2020b) Small molecule inhibitors of Middle East respiratory syndrome coronavirus fusion by targeting cavities on heptad repeat trimers. Biomol. Ther. (Seoul) 28, 311-319.   DOI
3 Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S. and Ward, A. B. (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118-121.   DOI
4 Liu, I. J., Kao, C. L., Hsieh, S. C., Wey, M. T., Kan, L. S. and Wang, W. K. (2009) Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Antiviral Res. 81, 82-87.   DOI
5 Liu, S., Xiao, G., Chen, Y., He, Y., Niu, J., Escalante, C. R., Xiong, H., Farmar, J., Debnath, A. K., Tien, P. and Jiang, S. (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363, 938-947.   DOI
6 Lu, L., Liu, Q., Zhu, Y., Chan, K. H., Qin, L., Li, Y., Wang, Q., Chan, J. F., Du, L., Yu, F., Ma, C., Ye, S., Yuen, K. Y., Zhang, R. and Jiang, S. (2014) Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 5, 3067.   DOI
7 Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth, M. H., 2nd, Kazer, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., Mead, B. E., Guo, Z., Wang, J. P., Gras, D., Plaisant, M., Ansari, M., Angelidis, I., Adler, H., Sucre, J. M. S., Taylor, C. J., Lin, B., Waghray, A., Mitsialis, V., Dwyer, D. F., Buchheit, K. M., Boyce, J. A., Barrett, N. A., Laidlaw, T. M., Carroll, S. L., Colonna, L., Tkachev, V., Peterson, C. W., Yu, A., Zheng, H. B., Gideon, H. P., Winchell, C. G., Lin, P. L., Bingle, C. D., Snapper, S. B., Kropski, J. A., Theis, F. J., Schiller, H. B., Zaragosi, L. E., Barbry, P., Leslie, A., Kiem, H. P., Flynn, J. L., Fortune, S. M., Berger, B., Finberg, R. W., Kean, L. S., Garber, M., Schmidt, A. G., Lingwood, D., Shalek, A. K. and Ordovas-Montanes, J. (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016-1035.e19.   DOI
8 Zhu, Y., Yu, D., Yan, H., Chong, H. and He, Y. (2020) Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 94, e00635-20.
9 Morishita, M., Kamei, N., Ehara, J., Isowa, K. and Takayama, K. (2007) A novel approach using functional peptides for efficient intestinal absorption of insulin. J. Control. Release 118, 177-184.   DOI
10 Mizukoshi, F., Baba, K., Goto, Y., Setoguchi, A., Fujino, Y., Ohno, K., Oishi, S., Kodera, Y., Fujii, N. and Tsujimoto, H. (2009) Antiviral activity of membrane fusion inhibitors that target gp40 of the feline immunodeficiency virus envelope protein. Vet. Microbiol. 136, 155-159.   DOI
11 Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W. and Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 49, 717-726.   DOI
12 Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L. and Jingqiang, Z. (2004) The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73, 332-337.   DOI
13 Sainz, B., Jr., Mossel, E. C., Gallaher, W. R., Wimley, W. C., Peters, C. J., Wilson, R. B. and Garry, R. F. (2006) Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res. 120, 146-155.   DOI
14 Seyedpour, S., Khodaei, B., Loghman, A. H., Seyedpour, N., Kisomi, M. F., Balibegloo, M., Nezamabadi, S. S., Gholami, B., Saghazadeh, A. and Rezaei, N. (2020) Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: a systematic review of in vitro and in vivo studies. J. Cell. Physiol. doi: 10.1002/jcp.30032 [Online ahead of print].   DOI
15 Shabane, P. S., Izadi, S. and Onufriev, A. V. (2019) General purpose water model can improve atomistic simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 15, 2620-2634.   DOI
16 Hakobyan, A., Galindo, I., Nanez, A., Arabyan, E., Karalyan, Z., Chistov, A. A., Streshnev, P. P., Korshun, V. A., Alonso, C. and Zakaryan, H. (2018) Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen. Virol. 99, 148-156.   DOI
17 Bashyal, S., Noh, G., Keum, T., Choi, Y. W. and Lee, S. (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J. Pharm. Investig. 46, 205-220.   DOI
18 Bosch, B. J., Van der Zee, R., De Haan, C. A. and Rottier, P. J. (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801-8811.   DOI
19 Gao, J., Lu, G., Qi, J., Li, Y., Wu, Y., Deng, Y., Geng, H., Li, H., Wang, Q. and Xiao, H. (2013) Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J. Virol. 87, 13134-13140.   DOI
20 Garton, M., Nim, S., Stone, T. A., Wang, K. E., Deber, C. M. and Kim, P. M. (2018) Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc. Natl. Acad. Sci. U.S.A. 115, 1505-1510.   DOI
21 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8.   DOI
22 Sungnak, W., Huang, N., Becavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-Lopez, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M. and Barnes, J. L. (2020) SARSCoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681-687.   DOI
23 Snook, K. A., Van Ess, R., 2nd, Werner, J. R., Clement, R. S., Ocon-Grove, O. M., Dodds, J. W., Ryan, K. J., Acosta, E. P., Zurlo, J. J. and Mulvihill, M. L. (2019) Transdermal delivery of enfuvirtide in a porcine model using a low-frequency, low-power ultrasound transducer patch. Ultrasound Med. Biol. 45, 513-525.   DOI
24 Song, W., Gui, M., Wang, X. and Xiang, Y. (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14, e1007236.   DOI
25 Stalmans, S., Bracke, N., Wynendaele, E., Gevaert, B., Peremans, K., Burvenich, C., Polis, I. and De Spiegeleer, B. (2015) Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS ONE 10, e0139652.   DOI
26 Tani, H., Shiokawa, M., Kaname, Y., Kambara, H., Mori, Y., Abe, T., Moriishi, K. and Matsuura, Y. (2010) Involvement of ceramide in the propagation of Japanese encephalitis virus. J. Virol. 84, 2798-2807.   DOI
27 Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E. and Berendsen, H. J. (2005) GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701-1718.   DOI
28 Vhora, I., Patil, S., Bhatt, P. and Misra, A. (2015) Chapter one - protein-and peptide-drug conjugates: an emerging drug delivery technology. In Advances in Protein Chemistry and Structural Biology (R. Donev, Ed.), Vol. 98, pp. 1-55. Academic Press.
29 Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M. and Nagata, N. (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol. 93, e01815-18.
30 Huet, T., Kerbarh, O., Schols, D., Clayette, P., Gauchet, C., Dubreucq, G., Vincent, L., Bompais, H., Mazinghien, R., Querolle, O., Salvador, A., Lemoine, J., Lucidi, B., Balzarini, J. and Petitou, M. (2010) Long-lasting enfuvirtide carrier pentasaccharide conjugates with potent anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 54, 134-142.   DOI
31 Jackman, J. A., Costa, V. V., Park, S., Real, A., Park, J. H., Cardozo, P. L., Ferhan, A. R., Olmo, I. G., Moreira, T. P., Bambirra, J. L., Queiroz, V. F., Queiroz-Junior, C. M., Foureaux, G., Souza, D. G., Ribeiro, F. M., Yoon, B. K., Wynendaele, E., De Spiegeleer, B., Teixeira, M. M. and Cho, N. J. (2018) Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nat. Mater. 17, 971-977.   DOI
32 Kadam, R. U., Juraszek, J., Brandenburg, B., Buyck, C., Schepens, W. B., Kesteleyn, B., Stoops, B., Vreeken, R. J., Vermond, J. and Goutier, W. (2017) Potent peptidic fusion inhibitors of influenza virus. Science 358, 496-502.   DOI
33 Kandeel, M., Abdelrahman, A. H. M., Oh-Hashi, K., Ibrahim, A., Venugopala, K. N., Morsy, M. A. and Ibrahim, M. A. A. (2020a) Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1784291 [Online ahead of print].   DOI
34 Kandeel, M. and Al-Nazawi, M. (2020) Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci. 251, 117627.   DOI
35 Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., Takeda, M., Kinoshita, N., Ohmagari, N., Gohda, J., Semba, K., Matsuda, Z., Kawaguchi, Y., Kawaoka, Y. and Inoue, J. I. (2020) The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12, 629.   DOI
36 Wang, H., Li, X., Nakane, S., Liu, S., Ishikawa, H., Iwamoto, A. and Matsuda, Z. (2014) Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain. PLoS ONE 9, e96790.   DOI
37 Xia, S., Liu, Q., Wang, Q., Sun, Z., Su, S., Du, L., Ying, T., Lu, L. and Jiang, S. (2014) Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res. 194, 200-210.   DOI
38 Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C. K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B. and Lu, L. (2019) A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 5, eaav4580.   DOI
39 Yao, X., Chong, H., Zhang, C., Waltersperger, S., Wang, M., Cui, S. and He, Y. (2012) Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide. J. Biol. Chem. 287, 6788-6796.   DOI
40 Brender, J. R. and Zhang, Y. (2015) Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494.   DOI
41 Cheng, S., Wang, Y., Zhang, Z., Lv, X., Gao, G. F., Shao, Y., Ma, L. and Li, X. (2016) Enfuvirtide-PEG conjugate: a potent HIV fusion inhibitor with improved pharmacokinetic properties. Eur. J. Med. Chem. 121, 232-237.   DOI
42 Chu, L. H. M., Chan, S. H., Tsai, S. N., Wang, Y., Cheng, C. H. K., Wong, K. B., Waye, M. M. Y. and Ngai, S. M. (2008) Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): in search of potent SARS-CoV entry inhibitors. J. Cell. Biochem. 104, 2335-2347.   DOI
43 De La Guardia, C. and Lleonart, R. (2014) Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Res. Int. 2014, 825039.   DOI
44 Dehouck, Y., Kwasigroch, J. M., Rooman, M. and Gilis, D. (2013) BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations. Nucleic Acid Res. 41, W333-W339.   DOI