Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.009

Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells  

Gweon, Bomi (Department of Mechanical Engineering, Sejong University)
Jang, Tae-Kyu (Department of Integrated Bioscience and Biotechnology, Sejong University)
Thuy, Pham Xuan (Department of Integrated Bioscience and Biotechnology, Sejong University)
Moon, Eun-Yi (Department of Integrated Bioscience and Biotechnology, Sejong University)
Publication Information
Biomolecules & Therapeutics / v.30, no.2, 2022 , pp. 170-178 More about this Journal
Abstract
The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.
Keywords
Primary cilium; Poly(I:C); Airway epithelial cell; Beas-2B cell; Cell migration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, D. and Garza, L. A. (2019) Hypothesis: wound-induced TLR3 activation stimulates endogenous retinoic acid synthesis and signalling during regeneration. Exp. Dermatol. 28, 450-452.   DOI
2 Kim, J., Choi, H., Choi, D. H., Park, K., Kim, H. J. and Park, M. (2021) Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia. Sci. Rep. 11, 2232.   DOI
3 Holgate, S. T. (2008) The airway epithelium is central to the pathogenesis of asthma. Allergol. Int. 57, 1-10.   DOI
4 Wang, W. C., Kuo, C. Y., Tzang, B. S., Chen, H. M. and Kao, S. H. (2012) IL-6 augmented motility of airway epithelial cell BEAS-2B via Akt/GSK-3beta signaling pathway. J. Cell. Biochem. 113, 3567-3575.   DOI
5 Nelson, A. M., Reddy, S. K., Ratliff, T. S., Hossain, M. Z., Katseff, A. S., Zhu, A. S., Chang, E., Resnik, S. R., Page, C., Kim, D., Whittam, A. J., Miller, L. S. and Garza, L. A. (2015) dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17, 139-151.   DOI
6 Pedersen, L. B., Schroder, J. M., Satir, P. and Christensen, S. T. (2012) The ciliary cytoskeleton. Compr. Physiol. 2, 779-803.   DOI
7 Puchelle, E., Zahm, J. M., Tournier, J. M. and Coraux, C. (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3, 726-733.   DOI
8 Wang, P. F., Fang, H., Chen, J., Lin, S., Liu, Y., Xiong, X. Y., Wang, Y. C., Xiong, R. P., Lv, F. L., Wang, J. and Yang, Q. W. (2014) Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via TLR3. J. Immunol. 192, 4783-4794.   DOI
9 Stowell, N. C., Seideman, J., Raymond, H. A., Smalley, K. A., Lamb, R. J., Egenolf, D. D., Bugelski, P. J., Murray, L. A., Marsters, P. A., Bunting, R. A., Flavell, R. A., Alexopoulou, L., San Mateo, L. R., Griswold, D. E., Sarisky, R. T., Mbow, M. L. and Das, A. M. (2009) Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respir. Res. 10, 43.   DOI
10 Castillon, N., Hinnrasky, J., Zahm, J. M., Kaplan, H., Bonnet, N., Corlieu, P., Klossek, J. M., Taouil, K., Avril-Delplanque, A., Peault, B. and Puchelle, E. (2002) Polarized expression of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab. Invest. 82, 989-998.   DOI
11 Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. and Golemis, E. A. (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363.   DOI
12 Satir, P., Pedersen, L. B. and Christensen, S. T. (2010) The primary cilium at a glance. J. Cell Sci. 123, 499-503.   DOI
13 Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C. and Zhang, Y. Z. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269.   DOI
14 Zahm, J. M., Chevillard, M. and Puchelle, E. (1991) Wound repair of human surface respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 5, 242-248.   DOI
15 Lewandowska-Polak, A., Brauncajs, M., Jarzebska, M., Pawelczyk, M., Kurowski, M., Chalubinski, M., Makowska, J. and Kowalski, M. L. (2018) Toll-like receptor agonists modulate wound regeneration in airway epithelial cells. Int. J. Mol. Sci. 19, 2456.   DOI
16 Basten, S. G. and Giles, R. H. (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2, 6.   DOI
17 Choi, H., Shin, J. H., Kim, E. S., Park, S. J., Bae, I. H., Jo, Y. K., Jeong, I. Y., Kim, H. J., Lee, Y., Park, H. C., Jeon, H. B., Kim, K. W., Lee, T. R. and Cho, D. H. (2016) Primary cilia negatively regulate melanogenesis in melanocytes and pigmentation in a human skin model. PLoS ONE 11, e0168025.   DOI
18 Huang, Y., Fu, Z., Dong, W., Zhang, Z., Mu, J. and Zhang, J. (2018) Serum starvation-induces down-regulation of Bcl-2/Bax confers apoptosis in tongue coating-related cells in vitro. Mol. Med. Rep. 17, 5057-5064.
19 Lee, J., Yoon, S. S., Thuy, P. X. and Moon, E. Y. (2020b) Synovial cell migration is associated with B cell activating factor expression increased by TNFalpha or decreased by KR33426. Biomol. Ther. (Seoul) 28, 405-413.   DOI
20 Jang, J. W., Lee, J. W., Yoon, Y. D., Kang, J. S. and Moon, E. Y. (2020) Bisphenol A and its substitutes regulate human B cell survival via Nrf2 expression. Environ. Pollut. 259, 113907.   DOI
21 Koizumi, Y., Nagase, H., Nakajima, T., Kawamura, M. and Ohta, K. (2016) Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression. Allergol. Int. 65 Suppl, S30-S37.   DOI
22 Oertel, M., Graness, A., Thim, L., Buhling, F., Kalbacher, H. and Hoffmann, W. (2001) Trefoil factor family-peptides promote migration of human bronchial epithelial cells: synergistic effect with epidermal growth factor. Am. J. Respir. Cell Mol. Biol. 25, 418-424.   DOI
23 Lee, J. W., Kim, H. S. and Moon, E. Y. (2019) Thymosin beta-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci. Rep. 9, 6849.   DOI
24 Chen, E., Chen, C., Niu, Z., Gan, L., Wang, Q., Li, M., Cai, X., Gao, R., Katakam, S., Chen, H., Zhang, S., Zhou, R., Cheng, X., Qiu, Y., Yu, H., Zhu, T. and Liu, J. (2020) Poly(I:C) preconditioning protects the heart against myocardial ischemia/reperfusion injury through TLR3/PI3K/Akt-dependent pathway. Signal Transduct. Target. Ther. 5, 216.   DOI
25 Lee, I. T., Nakayama, T., Wu, C. T., Goltsev, Y., Jiang, S., Gall, P. A., Liao, C. K., Shih, L. C., Schurch, C. M., McIlwain, D. R., Chu, P., Borchard, N. A., Zarabanda, D., Dholakia, S. S., Yang, A., Kim, D., Chen, H., Kanie, T., Lin, C. D., Tsai, M. H., Phillips, K. M., Kim, R., Overdevest, J. B., Tyler, M. A., Yan, C. H., Lin, C. F., Lin, Y. T., Bau, D. T., Tsay, G. J., Patel, Z. M., Tsou, Y. A., Tzankov, A., Matter, M. S., Tai, C. J., Yeh, T. H., Hwang, P. H., Nolan, G. P., Nayak, J. V. and Jackson, P. K. (2020a) ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun. 11, 5453.   DOI
26 Wang, X., Ha, T., Liu, L., Hu, Y., Kao, R., Kalbfleisch, J., Williams, D. and Li, C. (2018) TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR-152 expression. Cell Death Differ. 25, 966-982.   DOI
27 Go, A., Ryu, Y. K., Lee, J. W. and Moon, E. Y. (2013) Cell motility is decreased in macrophages activated by cancer cell-conditioned medium. Biomol. Ther. (Seoul) 21, 481-486.   DOI
28 Jackson, D. J. and Johnston, S. L. (2010) The role of viruses in acute exacerbations of asthma. J Allergy Clin. Immunol. 125, 1178-1187.   DOI
29 Avasthi, P. and Marshall, W. F. (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83, S30-S42.   DOI
30 Ott, C. and Lippincott-Schwartz, J. (2012) Visualization of live primary cilia dynamics using fluorescence microscopy. Curr. Protoc. Cell Biol. Chapter 4, Unit 4.26.
31 de Bentzmann, S., Polette, M., Zahm, J. M., Hinnrasky, J., Kileztky, C., Bajolet, O., Klossek, J. M., Filloux, A., Lazdunski, A. and Puchelle, E. (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Lab. Invest. 80, 209-219.   DOI
32 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8.   DOI
33 Martin, T. R. and Frevert, C. W. (2005) Innate immunity in the lungs. Proc. Am. Thorac. Soc. 2, 403-411.   DOI
34 Lim, Y. S. and Tang, B. L. (2015) A role for Rab23 in the trafficking of Kif17 to the primary cilium. J. Cell Sci. 128, 2996-3008.   DOI