• 제목/요약/키워드: respiration cycle

검색결과 102건 처리시간 0.037초

Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment

  • Khirul, Md Akhte;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.274-280
    • /
    • 2020
  • The marine sediment sustains from the anoxic condition due to increased nutrients of external sources. The nutrients are liberated from the sediment, which acts as an internal source. In hypoxic environments, anaerobic respiration results in the formation of several reduced matters, such as N2 and NH4+, N2O, Fe2+, H2S, etc. The experimental results have shown that nitrogen and sulfur played an influential, notable role in this biogeochemical cycle with expected chemical reductions and a 'diffusive' release of present nutrient components trapped in pore water inside sediment toward the bulk water. Nitate/ammonium, sulfate/sulfides, and ferrous/ferric irons are found to be the key players in these sediment-waters mutual interactions. Organonitrogen and nitrate in the sediment were likely to be converted to a form of ammonium. Reductive nitrogen is called dissimilatory nitrate reduction to ammonium and denitrification. The steady accumulation in the sediment and surplus increases in the overlying waters of ammonium strongly support this hypothesis as well as a diffusive action of the involved chemical species. Sulfate would serve as an essential electron acceptor so as to form acid volatile sulfides in present of Fe3+, which ended up as the Fe2+ positively with an aid of the residential microbial community.

Transcriptional Response of Pectobacterium carotovorum to Cinnamaldehyde Treatment

  • Jihye Jung;Dawon Jo;Soo-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.538-546
    • /
    • 2024
  • Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, in-depth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 ㎍/ml, 125 ㎍/ml, and 125 ㎍/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 ㎍/ml, 250 ㎍/ml, and 500 ㎍/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 ㎍/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

The feasibility evaluation of Respiratory Gated radiation therapy simulation according to the Respiratory Training with lung cancer (폐암 환자의 호흡훈련에 의한 호흡동조 방사선치료계획의 유용성 평가)

  • Hong, mi ran;Kim, cheol jong;Park, soo yeon;Choi, jae won;Pyo, hong ryeol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제28권2호
    • /
    • pp.149-159
    • /
    • 2016
  • Purpose : To evaluate the usefulness of the breathing exercise,we analyzed the change in the RPM signal and the diaphragm imagebefore 4D respiratory gated radiation therapy planning of lung cancer patients. Materials and Methods : The breathing training was enforced on 11 patients getting the 4D respiratory gated radiation therapy from April, 2016 until August. At the same time, RPM signal and diaphragm image was obtained respiration training total three steps in step 1 signal acquisition of free-breathing state, 2 steps respiratory signal acquisition through the guide of the respiratory signal, 3 steps, won the regular respiration signal to the description and repeat training. And then, acquired the minimum value, maximum value, average value, and a standard deviation of the inspiration and expiration in RPM signal and diaphragm image in each steps. Were normalized by the value of the step 1, to convert the 2,3 steps to the other distribution ratio (%), by evaluating the change in the interior of the respiratory motion of the patient, it was evaluated breathing exercise usefulness of each patient. Results : The mean value and the standard deviation of each step were obtained with the procedure 1 of the RPM signal and the diaphragm amplitude as a 100% reference. In the RPM signal, the amplitudes and standard deviations of four patients (36.4%, eleven) decreased by 18.1%, 27.6% on average in 3 steps, and 2 patients (18.2%, 11 people) had standard deviation, It decreased by an average of 36.5%. Meanwhile, the other four patients (36.4%, eleven) decreased by an average of only amplitude 13.1%. In Step 3, the amplitude of the diaphragm image decreased by 30% on average of 9 patients (81.8%, 11 people), and the average of 2 patients (18.2%, 11 people) increased by 7.3%. However, the amplitudes of RPM signals and diaphragm image in 3steps were reduced by 52.6% and 42.1% on average from all patients, respectively, compared to the 2 steps. Relationship between RPM signal and diaphragm image amplitude difference was consistent with patterns of movement 1, 2 and 3steps, respectively, except for No. 2 No. 10 patients. Conclusion : It is possible to induce an optimized respiratory cycle when respiratory training is done. By conducting respiratory training before treatment, it was possible to expect the effect of predicting the movement of the lung which could control the patient's respiration. Ultimately, it can be said that breathing exercises are useful because it is possible to minimize the systematic error of radiotherapy, expect more accurate treatment. In this study, it is limited to research analyzed based on data on respiratory training before treatment, and it will be necessary to verify with the actual CT plan and the data acquired during treatment in the future.

  • PDF

Study on effect on CO2 flux of wetland soil by feces of Korean water deer(Hydropotes inermis) (고라니(Hydropotes inermis)의 분변이 습지 토양의 CO2 flux에 미치는 영향)

  • Park, Hyomin;Chun, Seunghoon;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • 제17권3호
    • /
    • pp.283-292
    • /
    • 2015
  • The total global emission of $CO_2$ from soils is recognized as one of the largest fluxes in the global carbon cycle. Especially it is necessary to quantify the amount of $CO_2$ emitted by the organic material decomposition processes of microorganisms in the soil, because it becomes one of a factor for determining the carbon stocks in the soil. This study was conducted to estimate the impact of the Korean water deer(Hydropotes inermis)' feces to the soil organic matter. Also, effects of Korean water deer' feces on $CO_2$ emissions of soil and land use pattern dependent $CO_2$ flux quantification are studied. The organic materials in the Korean water deer' feces significantly changed organic matter content of soil and influenced the activity of soil microorganisms, both changing of respiration of the soil and physical chemical components in soil. In particular, C/N ratio and the $CO_2$ flux of soil of four regions (Rice paddy, Fallow ground, Salix koreensis community, Phragmites australis community) showed a statistically highly significant correlation (P<0.01) with the presence or absence of feces. $CO_2$ flux of soil affected by the feces was 2-20 times higher than the soil unaffected by the feces. This study has great significance to quantify the extent of the material circulation and its impact to the terrestrial ecosystem and soil zone throughout Korean water deer' feces. Feces of wildlife can affect soil and soil material circulation.

Metabolic Imbalance between Glycolysis and Mitochondrial Respiration Induced by Low Temperature in Rice Plants (벼 냉해의 초기 기작으로서 생체막과 세포질 사이의 대사 불균형)

  • Lee, Keun-Pyo;Boo, Yong-Chool;Jung, Jin
    • Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.236-240
    • /
    • 2000
  • Correlations between mitochondrial respiration, glycolysis activity and overall growth activity of rice (Oryza sativa: cv. Dasan) seedlings during low temperature exposure were studied in order to provide insights into the underlying mechanism for the primary phase of chilling injury in plants. Among cellular membranes involved in energy metabolism, only the mitochondrial inner membrane showed not only physical phase transition at ca. $13^{\circ}C$, as monitored by ESR spin label, but also functional phase transition at the same temperature, as assessed by cytochrome c oxidase activity. The main regulatory enzyme of glycolysis, phosphofructokinase, in situ did not suffer phase transition of its activity at least in the $4{\sim}27^{\circ}C$ range. Low temperature caused a significant accumulation of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P), which disappeared almost completely on rewarming of the seedlings. Temperature profiles of the steady state levels of G6P and F6P revealed the inflection point appearing at around phase transition temperature of the mitochondrial membrane. The results conform to our previous proposition on the mechanism for the early stage events of chilling injury that the accumulation of glycolytic metabolites in cells due to metabolic imbalance at low temperature gives rise to an excess supply of electrons during rewarming period, which, in turn, results in overproduction of active oxygen in mitochondria.

  • PDF

Breathing control with a visual signal for aperture maneuver with controlled breath (AMC)

  • Suh, Ye-lin;Yi, Byong-Yong;Ahn, Seung-Do;Klm, Jong-Hoon;Lee, Sang-Wook;Shin, Seong-Soo;Choi, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.140-143
    • /
    • 2004
  • To appropriately control or compensate breathing motion of targets in thorax or abdomen during radiotherapy is still demanding. Our idea is that a visual signal may help regulate patient's breathing pattern, by controlling its amplitude and cycle. The system involving breathing control with a visual signal for aperture maneuver with controlled breath (AMC) has been developed. A thermocouple is used to detect the temperature change due to patient's breathing. The system also consists of a mask, in which the thermocouple is installed, an operational amplifier, a converter, etc. Patients were instructed to control their respiration by breathing following the visuals signal, as watching a display that shows both patients' current breathing pattern and the signal. The patterns of patients' controlled breathing and the signals coincided well. Therefore, when AMC technique is applied, a target moves in the range that is 60 % less than the range of free breathing motion with the help of the system and so target margins can be reduced significantly. This study reveals that a visual signal is not only useful to control patient's breathing but also clinically effective.

  • PDF

Curcumol Induces Apoptosis in SPC-A-1 Human Lung Adenocarcinoma Cells and Displays Anti-neoplastic Effects in Tumor Bearing Mice

  • Tang, Qi-Ling;Guo, Ji-Quan;Wang, Qi-You;Lin, Hai-Shu;Yang, Zhou-Ping;Peng, Tong;Pan, Xue-Diao;Liu, Bing;Wang, Su-Jun;Zang, Lin-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2307-2312
    • /
    • 2015
  • Curcumol is a sesquiterpene originally isolated from curcuma rhizomes, a component of herbal remedies commonly used in oriental medicine. Its beneficial pharmacological activities have attract significant interest recently. In this study, anti-cancer activity of curcumol was examined with both in vitro and in vivo models. It was found that curcumol exhibited time- and concentration-dependent anti-proliferative effects in SPC-A-1 human lung adenocarcinoma cells with cell cycle arrest in the G0/G1 phase while apoptosis-induction was also confirmed with flow cytometry and morphological analyses. Interestingly, curcumol did not display growth inhibition in MRC-5 human embryonic lung fibroblasts, suggesting the anti-proliferative effects of curcumol were specific to cancer cells. Anti-neoplastic effects of curcumol were also confirmed in tumor bearing mice. Curcumol (60 mg/ kg daily) significantly reduced tumor size without causing notable toxicity. In conclusion, curcumol appears a favorable anti-cancer candidate for further development.

Effects of Metal and Metalloid Contamination on Microbial Diversity and Activity in Agricultural Soils

  • Tipayno, Sherlyn C.;Chauhan, Puneet S.;Woo, Sung-Man;Hong, Bo-Hee;Park, Kee-Woong;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제44권1호
    • /
    • pp.146-159
    • /
    • 2011
  • The continuous increase in the production of metals and their subsequent release into the environment has lead to increased concentration of these elements in agricultural soils. Because microbes are involved in almost every chemical transformations taking place in the soil, considerable attention has been given to assessing their responses to metal contaminants. Short-term and long-term exposures to toxic metals have been shown to reduce microbial diversity, biomass and activities in the soil. Several studies show that microbial parameters like basal respiration, metabolic quotient, and enzymatic activities, including those of oxidoreductases and those involved in the cycle of C, N, P and other elements, exhibit sensitivity to soil metal concentrations. These have been therefore, regarded as good indices for assessing the impact of metal contaminants to the soil. Metal contamination has also been extensively shown to decrease species diversity and cause shifts in microbial community structure. Biochemical and molecular techniques that are currently being employed to detect these changes are continuously challenged by several limiting factors, although showing some degree of sensitivity and efficiency. Variations and inconsistencies in the responses of bioindicators to metal stress in the soil can also be explained by differences in bioavailability of the metal to the microorganisms. This, in turn, is influenced by soil characteristics such as CEC, pH, soil particles and other factors. Therefore, aside from selecting the appropriate techniques to better understand microbial responses to metals, it is also important to understand the prevalent environmental conditions that interplay to bring about observed changes in any given soil parameter.

Studies on Protein Profiles and Isozymes in Germinating Seeds (종자발아에 있어서 Protein Profile과 Isozyme에 관한 연구)

  • 권오용
    • Journal of Plant Biology
    • /
    • 제17권4호
    • /
    • pp.143-156
    • /
    • 1974
  • The purpose of this experiment was to study one side of germination physiology based on that protein profiles and protease relating to protein metabolism, that peroxidase, catalase, $\alpha$-amylase, $\beta$-amylase, and malate dehydrogenase involved in the carbohydrate metabolism of seed germination. All these experiments were divided into the two groups with and without acetone treatment, and were carried out. The protein bands of each germinating stage between the groups treated with and without acetone showed certain basic pattern in polyacrylamide gel disc electrophoresis. However, there was a little difference in the number of protein band, optical density, and migration velocity between two groups. The isozyme bands of peroxidase, and catalase between two groups in polyacrylamide gel disc electrophoresis did not show the numeral difference, but the optical density of certain germinating stage treated with acetone was higher than the group untreated with it and it showed their enzyme activity. The $\alpha$-amylase and $\beta$-amylase activities which involved in starch metabolism of seed germination were higher in the treated group than the other. On one hand, the protease activity of hydrolase occurred in the seeds for germination was also higher, more or less in the treated group than in the other. The isozyme band pattern of malate dehydrogenase in TCA cycle of energy metabolism pathway was very different between two groups growing for 72 hours with and without acetone treatment in cellulose acetate electrophoresis. It indicated that two isozyme bands of malate dehydrogenase was high. Consequently these experimental results mentioned above indicated that acetone treatment before sowing had an effect on dissolving certain complexed lipid substance involved in the seed coats, the activity of carbohydrate hydrolase increased with water absorption which was most comfortable in its germination, dissolved glycerin and fatty acid became certain energy source, and they stimulated the acceleration of respiration metabolism.

  • PDF